Bernoulli

  • Bernoulli
  • Volume 19, Number 1 (2013), 172-204.

Central limit theorem for the robust log-regression wavelet estimation of the memory parameter in the Gaussian semi-parametric context

O. Kouamo, C. Lévy-Leduc, and E. Moulines

Full-text: Open access

Abstract

In this paper, we study robust estimators of the memory parameter $d$ of a (possibly) non-stationary Gaussian time series with generalized spectral density $f$. This generalized spectral density is characterized by the memory parameter $d$ and by a function $f^{\ast}$ which specifies the short-range dependence structure of the process. Our setting is semi-parametric since both $f^{\ast}$ and $d$ are unknown, and $d$ is the only parameter of interest. The memory parameter $d$ is estimated by regressing the logarithm of the estimated variance of the wavelet coefficients at different scales. The two estimators of $d$ that we consider are based on robust estimators of the variance of the wavelet coefficients, namely the square of the scale estimator proposed by Rousseeuw and Croux [J. Amer. Statist. Assoc. 88 (1993) 1273–1283] and the median of the square of the wavelet coefficients. We establish a central limit theorem, for these robust estimators as well as for the estimator of $d$, based on the classical estimator of the variance proposed by Moulines, Roueff and Taqqu [Fractals 15 (2007) 301–313]. Some Monte-Carlo experiments are presented to illustrate our claims and compare the performance of the different estimators. The properties of the three estimators are also compared to the Nile river data and the Internet traffic packet counts data. The theoretical results and the empirical evidence strongly suggest using the robust estimators as an alternative to estimate the memory parameter $d$ of Gaussian time series.

Article information

Source
Bernoulli, Volume 19, Number 1 (2013), 172-204.

Dates
First available in Project Euclid: 18 January 2013

Permanent link to this document
https://projecteuclid.org/euclid.bj/1358531746

Digital Object Identifier
doi:10.3150/11-BEJ398

Mathematical Reviews number (MathSciNet)
MR3019491

Zentralblatt MATH identifier
1288.62061

Keywords
long-range dependence memory parameter estimator robustness scale estimator semiparametric estimation wavelet analysis

Citation

Kouamo, O.; Lévy-Leduc, C.; Moulines, E. Central limit theorem for the robust log-regression wavelet estimation of the memory parameter in the Gaussian semi-parametric context. Bernoulli 19 (2013), no. 1, 172--204. doi:10.3150/11-BEJ398. https://projecteuclid.org/euclid.bj/1358531746


Export citation

References

  • [1] Abry, P. and Veitch, D. (1998). Wavelet analysis of long-range-dependent traffic. IEEE Trans. Inform. Theory 44 2–15.
  • [2] Arcones, M.A. (1994). Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. Ann. Probab. 22 2242–2274.
  • [3] Beran, J. (1992). Statistical methods for data with long-range dependence. Statist. Sci. 7 404–427.
  • [4] Beran, J. (1994). Statistics for Long-Memory Processes. Monographs on Statistics and Applied Probability 61. New York: Chapman & Hall.
  • [5] Billingsley, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley Series in Probability and Statistics: Probability and Statistics. New York: Wiley.
  • [6] Breuer, P. and Major, P. (1983). Central limit theorems for nonlinear functionals of Gaussian fields. J. Multivariate Anal. 13 425–441.
  • [7] Brockwell, P.J. and Davis, R.A. (1991). Time Series: Theory and Methods, 2nd ed. Springer Series in Statistics. New York: Springer.
  • [8] Chareka, P., Matarise, F. and Turner, R. (2006). A test for additive outliers applicable to long-memory time series. J. Econom. Dynam. Control 30 595–621.
  • [9] Coeurjolly, J.F. (2008). Bahadur representation of sample quantiles for functional of Gaussian dependent sequences under a minimal assumption. Statist. Probab. Lett. 78 2485–2489.
  • [10] Coeurjolly, J.F. (2008). Hurst exponent estimation of locally self-similar Gaussian processes using sample quantiles. Ann. Statist. 36 1404–1434.
  • [11] Csörgó, S. and Mielniczuk, J. (1996). The empirical process of a short-range dependent stationary sequence under Gaussian subordination. Probab. Theory Related Fields 104 15–25.
  • [12] Donoho, D.L. and Johnstone, I.M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 425–455.
  • [13] Faÿ, G., Moulines, E., Roueff, F. and Taqqu, M.S. (2009). Estimators of long-memory: Fourier versus wavelets. J. Econometrics 151 159–177.
  • [14] Geweke, J. and Porter-Hudak, S. (1983). The estimation and application of long memory time series models. J. Time Ser. Anal. 4 221–238.
  • [15] Johnstone, I.M. and Silverman, B.W. (1997). Wavelet threshold estimators for data with correlated noise. J. Roy. Statist. Soc. Ser. B 59 319–351.
  • [16] Lévy-Leduc, C., Boistard, H., Moulines, E., Taqqu, M.S. and Reisen, V.A. (2011). Robust estimation of the scale and of the autocovariance function of Gaussian short- and long-range dependent processes. J. Time Series Anal. 32 135–156.
  • [17] Ma, Y. and Genton, M.G. (2000). Highly robust estimation of the autocovariance function. J. Time Ser. Anal. 21 663–684.
  • [18] Molinares, F.F., Reisen, V.A. and Cribari-Neto, F. (2009). Robust estimation in long-memory processes under additive outliers. J. Statist. Plann. Inference 139 2511–2525.
  • [19] Moulines, E., Roueff, F. and Taqqu, M.S. (2007). Central limit theorem for the log-regression wavelet estimation of the memory parameter in the Gaussian semi-parametric context. Fractals 15 301–313.
  • [20] Moulines, E., Roueff, F. and Taqqu, M.S. (2007). On the spectral density of the wavelet coefficients of long-memory time series with application to the log-regression estimation of the memory parameter. J. Time Ser. Anal. 28 155–187.
  • [21] Moulines, E. and Soulier, P. (2003). Semiparametric spectral estimation for fractional processes. In Theory and Applications of Long-Range Dependence 251–301. Boston, MA: Birkhäuser.
  • [22] Park, C., Godtliebsen, F., Taqqu, M., Stoev, S. and Marron, J.S. (2007). Visualization and inference based on wavelet coefficients, SiZer and SiNos. Comput. Statist. Data Anal. 51 5994–6012.
  • [23] Park, J. and Park, C. (2009). Robust estimation of the Hurst parameter and selection of an onset scaling. Statist. Sinica 19 1531–1555.
  • [24] Percival, D.B. and Walden, A.T. (2006). Wavelet Methods for Time Series Analysis. Cambridge Series in Statistical and Probabilistic Mathematics 4. Cambridge: Cambridge Univ. Press.
  • [25] Robinson, P.M. (1995). Gaussian semiparametric estimation of long range dependence. Ann. Statist. 23 1630–1661.
  • [26] Rosenblatt, M. (1985). Stationary Sequences and Random Fields. Boston, MA: Birkhäuser.
  • [27] Rousseeuw, P.J. and Croux, C. (1993). Alternatives to the median absolute deviation. J. Amer. Statist. Assoc. 88 1273–1283.
  • [28] Shen, H., Zhu, Z. and Lee, T. (2007). Robust estimation of the self-similarity parameter in network traffic using wavelet transform. Signal Process. 87 2111–2124.
  • [29] Stoev, S., Taqqu, M., Park, C. and Marron, J.S. (2005). On the wavelet spectrum diagnostic for Hurst parameter estimation in the analysis of internet traffic. Comput. Netw. 48 423–445.
  • [30] Stoev, S. and Taqqu, M.S. (2005). Asymptotic self-similarity and wavelet estimation for long-range dependent fractional autoregressive integrated moving average time series with stable innovations. J. Time Ser. Anal. 26 211–249.
  • [31] Stoev, S., Taqqu, M.S., Park, C., Michailidis, G. and Marron, J.S. (2006). LASS: A tool for the local analysis of self-similarity. Comput. Statist. Data Anal. 50 2447–2471.
  • [32] van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3. Cambridge: Cambridge Univ. Press.