Open Access
February 2013 Consistent nonparametric Bayesian inference for discretely observed scalar diffusions
Frank van der Meulen, Harry van Zanten
Bernoulli 19(1): 44-63 (February 2013). DOI: 10.3150/11-BEJ385

Abstract

We study Bayes procedures for the problem of nonparametric drift estimation for one-dimensional, ergodic diffusion models from discrete-time, low-frequency data. We give conditions for posterior consistency and verify these conditions for concrete priors, including priors based on wavelet expansions.

Citation

Download Citation

Frank van der Meulen. Harry van Zanten. "Consistent nonparametric Bayesian inference for discretely observed scalar diffusions." Bernoulli 19 (1) 44 - 63, February 2013. https://doi.org/10.3150/11-BEJ385

Information

Published: February 2013
First available in Project Euclid: 18 January 2013

zbMATH: 1259.62070
MathSciNet: MR3019485
Digital Object Identifier: 10.3150/11-BEJ385

Keywords: Bayesian nonparametrics , drift function , posterior consistency , posterior distribution , Stochastic differential equations , Wavelets

Rights: Copyright © 2013 Bernoulli Society for Mathematical Statistics and Probability

Vol.19 • No. 1 • February 2013
Back to Top