Bernoulli

Functional data analysis in an operator-based mixed-model framework

Bo Markussen

Full-text: Open access

Abstract

Functional data analysis in a mixed-effects model framework is done using operator calculus. In this approach the functional parameters are treated as serially correlated effects giving an alternative to the penalized likelihood approach, where the functional parameters are treated as fixed effects. Operator approximations for the necessary matrix computations are proposed, and semi-explicit and numerically stable formulae of linear computational complexity are derived for likelihood analysis. The operator approach renders the usage of a functional basis unnecessary and clarifies the role of the boundary conditions.

Article information

Source
Bernoulli, Volume 19, Number 1 (2013), 1-17.

Dates
First available in Project Euclid: 18 January 2013

Permanent link to this document
https://projecteuclid.org/euclid.bj/1358531738

Digital Object Identifier
doi:10.3150/11-BEJ389

Mathematical Reviews number (MathSciNet)
MR3019483

Zentralblatt MATH identifier
1259.62001

Keywords
determinant approximation Gaussian process Green’s function random effect serial correlation operator approximation

Citation

Markussen, Bo. Functional data analysis in an operator-based mixed-model framework. Bernoulli 19 (2013), no. 1, 1--17. doi:10.3150/11-BEJ389. https://projecteuclid.org/euclid.bj/1358531738


Export citation

References

  • [1] Harville, D.A. (1977). Maximum likelihood approaches to variance component estimation and to related problems. J. Amer. Statist. Assoc. 72 320–340.
  • [2] Henderson, H.V. (1975). Best linear unbiased estimation and prediction under a selection model. Biometrics 31 423–447.
  • [3] Henderson, H.V. and Searle, S.R. (1981). On deriving the inverse of a sum of matrices. SIAM Rev. 23 53–60.
  • [4] Kackar, R.N. and Harville, D.A. (1981). Unbiasedness of two-stage estimation and prediction procedures for mixed linear models. Comm. Statist. A—Theory Methods 10 1249–1261.
  • [5] Kincaid, D. and Cheney, W. (1991). Numerical Analysis. Pacific Grove, CA: Brooks/Cole Publishing Co.
  • [6] Kou, S.C. and Efron, B. (2002). Smoothers and the $C_{p}$, generalized maximum likelihood, and extended exponential criteria: A geometric approach. J. Amer. Statist. Assoc. 97 766–782.
  • [7] Lee, Y., Nelder, J.A. and Pawitan, Y. (2006). Generalized Linear Models with Random Effects. Monographs on Statistics and Applied Probability 106. Boca Raton, FL: Chapman & Hall/CRC.
  • [8] Markussen, B. (2011). fdaMixed: Functional data analysis in a mixed model framework. R package version 0.1. Available at http://CRAN.R-project.org/package=fdaMixed.
  • [9] Morrell, C.H. (1998). Likelihood ratio testing of variance components in the linear mixed-effects model using restricted maximum likelihood. Biometrics 54 1560–1568.
  • [10] Pinheiro, J.C. and Bates, D.M. (2000). Mixed-Effects Models in S and S-PLUS. Springer Series in Statistics and Computing. New York: Springer.
  • [11] Ramsay, J.O. and Silverman, B.W. (2002). Applied Functional Data Analysis. Springer Series in Statistics. New York: Springer.
  • [12] Ramsay, J.O. and Silverman, B.W. (2005). Functional Data Analysis, 2nd ed. Springer Series in Statistics. New York: Springer.
  • [13] Robinson, G.K. (1991). That BLUP is a good thing: The estimation of random effects. Statist. Sci. 6 15–51.
  • [14] Verbyla, A.P., Cullis, B.R., Kenward, M.G. and Welham, S.J. (1999). The analysis of designed experiments and longitudinal data by using smoothing splines. Appl. Statist. 48 269–311.
  • [15] Villanueva, R.J. and Jódar, L. (1992). Generalized Green’s functions for higher order boundary value matrix differential systems. Internat. J. Math. Math. Sci. 15 523–535.
  • [16] Welham, S.J. and Thompson, R. (1997). Likelihood ratio tests for fixed model terms using residual maximum likelihood. J. Roy. Statist. Soc. Ser. B 59 701–714.