Bernoulli

  • Bernoulli
  • Volume 18, Number 4 (2012), 1341-1360.

Conditional large and moderate deviations for sums of discrete random variables. Combinatoric applications

Fabrice Gamboa, Thierry Klein, and Clémentine Prieur

Full-text: Open access

Abstract

We prove large and moderate deviation principles for the distribution of an empirical mean conditioned by the value of the sum of discrete i.i.d. random variables. Some applications for combinatoric problems are discussed.

Article information

Source
Bernoulli, Volume 18, Number 4 (2012), 1341-1360.

Dates
First available in Project Euclid: 12 November 2012

Permanent link to this document
https://projecteuclid.org/euclid.bj/1352727814

Digital Object Identifier
doi:10.3150/11-BEJ376

Mathematical Reviews number (MathSciNet)
MR2995799

Zentralblatt MATH identifier
1259.60030

Keywords
combinatoric problems conditional distribution large and moderate deviation principles

Citation

Gamboa, Fabrice; Klein, Thierry; Prieur, Clémentine. Conditional large and moderate deviations for sums of discrete random variables. Combinatoric applications. Bernoulli 18 (2012), no. 4, 1341--1360. doi:10.3150/11-BEJ376. https://projecteuclid.org/euclid.bj/1352727814


Export citation

References

  • [1] Arratia, R., Barbour, A.D. and Tavaré, S. (2003). Logarithmic Combinatorial Structures: A Probabilistic Approach. EMS Monographs in Mathematics. Zürich: European Mathematical Society (EMS).
  • [2] Azencott, R. (1980). Grandes déviations et applications. In Eighth Saint Flour Probability Summer School – 1978 (Saint Flour, 1978). Lecture Notes in Math. 774 1–176. Berlin: Springer.
  • [3] Barndorff-Nielsen, O. (1978). Information and Exponential Families in Statistical Theory. Wiley Series in Probability and Mathematical Statistics. Chichester: Wiley.
  • [4] Bartlett, M.S. (1938). The characteristic function of a conditional statistic. J. Lond. Math. Soc. (2) 13 62–67.
  • [5] Boucheron, S., Gamboa, F. and Léonard, C. (2002). Bins and balls: Large deviations of the empirical occupancy process. Ann. Appl. Probab. 12 607–636.
  • [6] Csiszár, I. (1984). Sanov property, generalized $I$-projection and a conditional limit theorem. Ann. Probab. 12 768–793.
  • [7] Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications, 2nd ed. Applications of Mathematics (New York) 38. New York: Springer.
  • [8] Efron, B. and Tibshirani, R.J. (1993). An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability 57. New York: Chapman & Hall.
  • [9] Feller, W. (1968). An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd ed. New York: Willey.
  • [10] Flajolet, P., Poblete, P. and Viola, A. (1998). On the analysis of linear probing hashing. Algorithmica 22 490–515.
  • [11] Hald, A. (1998). A History of Mathematical Statistics from 1750 to 1930. Wiley Series in Probability and Statistics: Texts and References Section. New York: Wiley.
  • [12] Hipp, C. (1984). Asymptotic expansions for conditional distributions: The lattice case. Probab. Math. Statist. 4 207–219.
  • [13] Hollander, F.D. (2008). Large Deviation. Fields Institute Monographs. Providence, RI: Amer. Math. Soc.
  • [14] Holst, L. (1979). Two conditional limit theorems with applications. Ann. Statist. 7 551–557.
  • [15] Janson, S. (2001). Asymptotic distribution for the cost of linear probing hashing. Random Structures Algorithms 19 438–471.
  • [16] Janson, S. (2001). Moment convergence in conditional limit theorems. J. Appl. Probab. 38 421–437.
  • [17] Jing, B.Y., Shao, Q.M. and Wang, Q. (2003). Self-normalized Cramér-type large deviations for independent random variables. Ann. Probab. 31 2167–2215.
  • [18] Kolchin, V.F. (1984). Random Mappings. Moscou: Nauka (in Russian). English translation: New York: Optimization Software, 1986.
  • [19] Kudlaev, È.M. (1984). Conditional limit distributions of sums of random variables. Teor. Veroyatnost. i Primenen. 29 743–752. English translation: Theory Probab. Appl. 29 (1984) 776–786.
  • [20] Pavlov, J.L. (1977). Limit theorems for the number of trees of a given size in a random forest. Mat. Sb. (N.S.) 103 392–403, 464. English translation: Math. USSR Sb. 32 335–345.
  • [21] Pavlov, Y.L. (1996). Random Forest. Petrozavodsk: Karelin Research Institut Centre, Russian Academy of Science (in Russian). English translation: Zeist: VSP, 2000.
  • [22] Robinson, J., Höglund, T., Holst, L. and Quine, M.P. (1990). On approximating probabilities for small and large deviations in $\mathbf{R}^{d}$. Ann. Probab. 18 727–753.
  • [23] Rockafellar, R.T. (1970). Convex Analysis. Princeton, NJ: Princeton Univ. Press.
  • [24] Steck, G.P. (1957). Limit theorems for conditional distributions. Univ. California Publ. Statist. 2 237–284.
  • [25] Van Campenhout, J.M. and Cover, T.M. (1981). Maximum entropy and conditional probability. IEEE Trans. Inform. Theory 27 483–489.