• Bernoulli
  • Volume 17, Number 4 (2011), 1268-1284.

Absolute regularity and ergodicity of Poisson count processes

Michael H. Neumann

Full-text: Open access


We consider a class of observation-driven Poisson count processes where the current value of the accompanying intensity process depends on previous values of both processes. We show under a contractive condition that the bivariate process has a unique stationary distribution and that a stationary version of the count process is absolutely regular. Moreover, since the intensities can be written as measurable functionals of the count variables, we conclude that the bivariate process is ergodic. As an important application of these results, we show how a test method previously used in the case of independent Poisson data can be used in the case of Poisson count processes.

Article information

Bernoulli, Volume 17, Number 4 (2011), 1268-1284.

First available in Project Euclid: 4 November 2011

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

absolute regularity ergodicity integer-valued process mixing Poisson count process test


Neumann, Michael H. Absolute regularity and ergodicity of Poisson count processes. Bernoulli 17 (2011), no. 4, 1268--1284. doi:10.3150/10-BEJ313.

Export citation


  • [1] Andrews, D.W.K. (1984). Nonstrong mixing autoregressive processes. J. Appl. Probab. 21 930–934.
  • [2] Billingsley, P. (1968). Convergence of Probability Measures. New York: Wiley.
  • [3] Bradley, R.C. (2007). Introduction to Strong Mixing Conditions. Vol. I. Heber City, UT: Kendrick Press.
  • [4] Brännäs, K. and Johansson, P. (1994). Time series count data regression. Comm. Statist. Theory Methods 23 2907–2925.
  • [5] Cameron, A.C. and Trivedi, P.K. (1986). Econometric models based on count data: Comparison and applications of some estimators and tests. J. Appl. Econometrics 1 29–53.
  • [6] Cox, D.R. (1981). Statistical analysis of time series: Some recent developments (with discussion). Scand. J. Stat. 8 93–115.
  • [7] Cox, D.R. (1983). Some remarks on overdispersion. Biometrika 70 269–274.
  • [8] Davis, R.A., Dunsmuir, W.T.M. and Streett, S.B. (2003). Observation-driven models for Poisson counts. Biometrika 90 777–790.
  • [9] Davis, R.A., Wang, Y. and Dunsmuir, W.T.M. (1999). Modeling time series of count data. In Asymptotics, Nonparametrics, and Time Series. Statist. Textbooks Monogr. 158 (S. Ghosh, ed.) 63–113. New York: Dekker.
  • [10] Davis, R.A. and Wu, R. (2009). A negative binomial model for time series of counts. Biometrika 96 735–749.
  • [11] Dean, C. and Lawless, J.F. (1989). Tests for detecting overdispersion in Poisson regression models. J. Amer. Statist. Assoc. 84 467–472.
  • [12] Dean, C.B. (1992). Testing for overdispersion in Poisson and binomial regression models. J. Amer. Statist. Assoc. 87 451–457.
  • [13] Diaconis, P. and Freedman, D. (1999). Iterated random functions. SIAM Rev. 41 45–76.
  • [14] Doukhan, P. (1994). Mixing: Properties and Examples. Lecture Notes in Statistics 85. New York: Springer.
  • [15] Durrett, R. (1991). Probability: Theory and Examples. Pacific Grove, CA: Wadsworth & Brooks/Cole.
  • [16] Ferland, R., Latour, A. and Oraichi, D. (2006). Integer-valued GARCH process. J. Time Series Anal. 27 923–942.
  • [17] Fokianos, K., Rahbek, A. and Tjøstheim, D. (2009). Poisson autoregression. J. Amer. Statist. Assoc. 104 1430–1439.
  • [18] Fokianos, K. and Tjøstheim, D. (2011). Log-linear Poisson autoregression. J. Mult. Anal. 102 563–578.
  • [19] Grunwald, G.K., Hyndman, R.J., Tedesco, L. and Tweedie, R.L. (2000). Non-Gaussian conditional linear AR(1) models. Aust. N. Z. J. Stat. 42 479–495.
  • [20] Kedem, B. and Fokianos, K. (2002). Regression Models for Time Series Analysis. Hoboken, NJ: Wiley.
  • [21] Lasota, A. and Mackey, M.C. (1989). Stochastic perturbation of dynamical systems: The weak convergence of measures. J. Math. Anal. Appl. 138 232–248.
  • [22] Lee, L.F. (1986). Specification test for Poisson regression models. Internat. Econom. Rev. 27 689–706.
  • [23] Meyn, S.P. and Tweedie, R.L. (1993). Markov Chains and Stochastic Stability. London: Springer.
  • [24] Pollard, D. (1984). Convergence of Stochastic Processes. New York: Springer.
  • [25] Rosenblatt, M. (1980). Linear processes and bispectra. J. Appl. Probab. 17 265–270.
  • [26] Rydberg, T.H. and Shephard, N. (2000). BIN models for trade-by-trade data. Modelling the number of trades in a fixed interval of time. In World Conference Econometric Society, 2000, Seattle. Contributed Paper 0740.
  • [27] Streett, S.B. (2000). Some observation driven models for time series. Ph.D. thesis, Dept. Statistics, Colorado State Univ.
  • [28] Zheng, H. and Basawa, I.V. (2008). First-order observation-driven integer-valued autoregressive processes. Statist. Probab. Lett. 78 1–9.