• Bernoulli
  • Volume 17, Number 2 (2011), 781-813.

Nonparametric tests for pathwise properties of semimartingales

Rama Cont and Cecilia Mancini

Full-text: Open access


We propose two nonparametric tests for investigating the pathwise properties of a signal modeled as the sum of a Lévy process and a Brownian semimartingale. Using a nonparametric threshold estimator for the continuous component of the quadratic variation, we design a test for the presence of a continuous martingale component in the process and a test for establishing whether the jumps have finite or infinite variation, based on observations on a discrete-time grid. We evaluate the performance of our tests using simulations of various stochastic models and use the tests to investigate the fine structure of the DM/USD exchange rate fluctuations and SPX futures prices. In both cases, our tests reveal the presence of a non-zero Brownian component and a finite variation jump component.

Article information

Bernoulli, Volume 17, Number 2 (2011), 781-813.

First available in Project Euclid: 5 April 2011

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

high frequency data jump processes nonparametric tests quadratic variation realized volatility semimartingale


Cont, Rama; Mancini, Cecilia. Nonparametric tests for pathwise properties of semimartingales. Bernoulli 17 (2011), no. 2, 781--813. doi:10.3150/10-BEJ293.

Export citation


  • [1] Aït-Sahalia, Y. (2004). Disentangling volatility from jumps. J. Financial Economics 74 487–528.
  • [2] Aït-Sahalia, Y. and Jacod, J. (2009). Testing for jumps in a discretely observed process. Ann. Statist. 37 184–222.
  • [3] Aït-Sahalia, Y. and Jacod, J. (2009). Estimating the degree of activity of jumps in high frequency data. Ann. Statist. 37 2202–2244.
  • [4] Aït-Sahalia, Y. and Jacod, J. (2009). Testing whether jumps have finite or infinite activity. Working paper.
  • [5] Alili, L. and Kyprianou, A. (2005). Some remarks on first passage of Lévy processes, the American put and pasting principles. Ann. Appl. Probab. 15 2062–2080.
  • [6] Barndorff-Nielsen, O.E. and Shephard, N. (2006). Econometrics of testing for jumps in financial economics using bipower variation. J. Financial Econometrics 4 1–30.
  • [7] Barndorff-Nielsen, O.E., Shephard, N. and Winkel, M. (2006). Limit theorems for multipower variation in the presence of jumps. Stochastic Process. Appl. 116 796–806.
  • [8] Carr, P., Geman, H., Madan, D. and Yor, M. (2002). The fine structure of asset returns: An empirical investigation. J. Business 75 305–332.
  • [9] Carr, P. and Wu, L.R. (2003). What type of process underlies options? A simple robust test. J. Finance LVIII 2581–2610.
  • [10] Cont, R. and Tankov, P. (2004). Financial Modelling with Jump Processes. Boca Raton, FL: CRC Press.
  • [11] Ikeda, N. and Watanabe, S. (1981). Stochastic Differential Equations and Diffusion Processes. Amsterdam: North Holland.
  • [12] Jacod, J. (2004). The Euler scheme for Lévy driven stochastic differential equations: Limit theorems. Ann. Probab. 32 1830–1872.
  • [13] Jacod, J. (2008). Asymptotic properties of realized power variations and associated functions of semimartingales. Stochastic Process. Appl. 118 517–559.
  • [14] Jacod, J. (2007). Statistics and high-frequency data. In SEMSTAT 2007, La Manga, Spain, May 2007.
  • [15] Jacod, J. and Protter, P. (1998). Asymptotic error distributions for the Euler method for stochastic differential equations. Ann. Probab. 26 267–307.
  • [16] Kou, S. (2002). A jump-diffusion model for option pricing. Management Science 48 1086–1101.
  • [17] Lee, S. and Mykland, P.A. (2008). Jumps in financial markets: A new nonparametric test and jump dynamics. Rev. Financial Stud. 21 2535–2563.
  • [18] Madan, D.B. (2001). Purely discontinuous asset price processes. In Option Pricing, Interest Rates and Risk Management (J. Cvitanic, E. Jouini and M. Musiela, eds.) 105–153. Cambridge: Cambridge Univ. Press.
  • [19] Mancini, C. (2004). Estimation of the parameters of jump of a general Poisson-diffusion model. Scand. Actuar. J. 1 42–52.
  • [20] Mancini, C. (2009). Non-parametric threshold estimation for models with stochastic diffusion coefficient and jumps. Scand. J. Statist. 36 270–296.
  • [21] Mancini, C. and Renó, R. (2008). Threshold estimation of Markov models with jumps and interest rate modeling. J. Econometrics. To appear. DOI:10.1016/j.jeconom.2010.03.019.
  • [22] Merton, R. (1976). Option pricing when underlying stock returns are discontinuous. J. Financial Economics 3 125–144.
  • [23] Metivier, M. (1982). Semimartingales: A Course On Stochastic Processes. Berlin: de Gruyter.
  • [24] Protter, P.E. (2005). Stochastic Integration and Differential Equations. Berlin: Springer.
  • [25] Todorov, V. and Tauchen, G. (2010). Activity signature functions for high-frequency data analysis. J. Econometrics 154 125–138.
  • [26] Woerner, J. (2006). Analyzing the fine structure of continuous time stochastic processes. Univ. Göttingen. Working paper.