• Bernoulli
  • Volume 17, Number 2 (2011), 530-544.

Poisson process approximation for dependent superposition of point processes

Louis H.Y. Chen and Aihua Xia

Full-text: Open access


Although the study of weak convergence of superpositions of point processes to the Poisson process dates back to the work of Grigelionis in 1963, it was only recently that Schuhmacher [Stochastic Process. Appl. 115 (2005) 1819–1837] obtained error bounds for the weak convergence. Schuhmacher considered dependent superposition, truncated the individual point processes to 0–1 point processes and then applied Stein’s method to the latter. In this paper, we adopt a different approach to the problem by using Palm theory and Stein’s method, thereby expressing the error bounds in terms of the mean measures of the individual point processes, which is not possible with Schuhmacher’s approach. We consider locally dependent superposition as a generalization of the locally dependent point process introduced in Chen and Xia [Ann. Probab. 32 (2004) 2545–2569] and apply the main theorem to the superposition of thinned point processes and of renewal processes.

Article information

Bernoulli Volume 17, Number 2 (2011), 530-544.

First available in Project Euclid: 5 April 2011

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

dependent superposition of point processes Poisson process approximation renewal processes sparse point processes Stein’s method thinned point processes


Chen, Louis H.Y.; Xia, Aihua. Poisson process approximation for dependent superposition of point processes. Bernoulli 17 (2011), no. 2, 530--544. doi:10.3150/10-BEJ290.

Export citation


  • [1] Banys, R. (1975). The convergence of sums of dependent point processes to Poisson processes. Litovsk. Mat. Sb. 15 11–23, 223.
  • [2] Banys, R. (1980). On superpositions of random measures and point processes. In Mathematical Statistics and Probability Theory (Proc. Sixth Internat. Conf., Wisla, 1978) 26–37. Lecture Notes in Statist. 2. New York: Springer.
  • [3] Banys, R. (1985). A Poisson limit theorem for rare events of a discrete random field. Litovsk. Mat. Sb. 25 3–8.
  • [4] Barbour, A.D. (1988). Stein’s method and Poisson process convergence. J. Appl. Probab. 25(A) 175–184.
  • [5] Barbour, A.D. and Brown, T.C. (1992). Stein’s method and point process approximation. Stochastic Process. Appl. 43 9–31.
  • [6] Barbour, A.D. and Eagleson, G.K. (1983). Poisson approximation for some statistics based on exchangeable trials. Adv. in Appl. Probab. 15 585–600.
  • [7] Barbour, A.D., Holst, L. and Janson, S. (1992). Poisson Approximation. Oxford: Oxford Univ. Press.
  • [8] Barbour, A.D. and Xia, A. (2006). Normal approximation for random sums. Adv. in Appl. Probab. 38 693–728.
  • [9] Brown, T.C. (1978). A martingale approach to the Poisson convergence of simple point processes. Ann. Probab. 6 615–628.
  • [10] Brown, T.C. (1979). Position dependent and stochastic thinning of point processes. Stochastic Process. Appl. 9 189–193.
  • [11] Brown, T.C., Weinberg, G.V. and Xia, A. (2000). Removing logarithms from Poisson process error bounds. Stochastic Process. Appl. 87 149–165.
  • [12] Brown, T.C. and Xia, A. (1995). On metrics in point process approximation. Stochastics Stochastics Rep. 52 247–263.
  • [13] Chen, L.H.Y. and Shao, Q.M. (2004). Normal approximation under local dependence. Ann. Probab. 32 1985–2028.
  • [14] Chen, L.H.Y. and Xia, A. (2004). Stein’s method, Palm theory and Poisson process approximation. Ann. Probab. 32 2545–2569.
  • [15] Çinlar, E. (1972). Superposition of point processes. In Stochastic Point Processes: Statistical Analysis, Theory, and Applications (Conf., IBM Res. Center, Yorktown Heights, NY, 1971) 549–606. New York: Wiley.
  • [16] Daley, D.J. and Vere-Jones, D. (1988). An Introduction to the Theory of Point Processes. New York: Springer.
  • [17] Fichtner, K. (1975). Schwache Konvergenz von unabhängigen Überlagerungen verdünnte zufälliger Punkfolgen. Math. Nachr. 66 333–341.
  • [18] Fichtner, K. (1977). Poissonsche zufällige Punktfolgen und ortsabhängige Verdünnungen. In Transactions of the Seventh Prague Conference on Information Theory, Statistical Decision Functions, Random Processes and of the Eighth European Meeting of Statisticians (Tech. Univ. Prague, Prague, 1974) A 123–133. Dordrecht: Reidel.
  • [19] Goldman, J.R. (1967). Stochastic point processes: Limit theorems. Ann. Math. Statist. 38 771–779.
  • [20] Goldstein, L. and Rinott, Y. (1996). Multivariate normal approximations by Stein’s method and size bias couplings. J. Appl. Probab. 33 1–17.
  • [21] Goldstein, L. and Xia, A. (2006). Zero biasing and a discrete central limit theorem. Ann. Probab. 34 1782–1806.
  • [22] Grigelionis, B. (1963). On the convergence of sums of random step processes to a Poisson process. Theory Probab. Appl. 8 177–182.
  • [23] Jagers, P. (1972). On the weak convergence of superpositions of point processes. Z. Wahrsch. Verw. Gebiete 22 1–7.
  • [24] Kallenberg, O. (1975). Limits of compound and thinned point processes. J. Appl. Probab. 12 269–278.
  • [25] Kallenberg, O. (1983). Random Measures. London: Academic Press.
  • [26] Liese, F. (1980). Überlagerung verdünnter und schwach abhängiger Punktprozesse. Math. Nachr. 95 177–186.
  • [27] Rachev, S.T. (1991). Probability Metrics and the Stability of Stochastic Models. Chichester: Wiley.
  • [28] Serfozo, R. (1984). Thinning of cluster processes: Convergence of sums of thinned point processes. Math. Oper. Res. 9 522–533.
  • [29] Schuhmacher, D. (2005). Distance estimates for dependent superpositions of point processes. Stochastic Process. Appl. 115 1819–1837.
  • [30] Schuhmacher, D. (2005). Distance estimates for Poisson process approximations of dependent thinnings. Electron. J. Probab. 10 165–201 (electronic).
  • [31] Viswanathan, T. (1992). Telecommunication Switching Systems and Networks. New Delhi: Prentice-Hall of India.
  • [32] Xia, A. (2005). Stein’s method and Poisson process approximation. In An Introduction to Stein’s Method (A.D. Barbour and L.H.Y. Chen, eds.) 115–181. Singapore: World Scientific Press.