Bernoulli
- Bernoulli
- Volume 16, Number 4 (2010), 1114-1136.
Compound Poisson and signed compound Poisson approximations to the Markov binomial law
V. Čekanavičius and P. Vellaisamy
Full-text: Open access
Abstract
Compound Poisson distributions and signed compound Poisson measures are used for approximation of the Markov binomial distribution. The upper and lower bound estimates are obtained for the total variation, local and Wasserstein norms. In a special case, asymptotically sharp constants are calculated. For the upper bounds, the smoothing properties of compound Poisson distributions are applied. For the lower bound estimates, the characteristic function method is used.
Article information
Source
Bernoulli, Volume 16, Number 4 (2010), 1114-1136.
Dates
First available in Project Euclid: 18 November 2010
Permanent link to this document
https://projecteuclid.org/euclid.bj/1290092898
Digital Object Identifier
doi:10.3150/09-BEJ246
Mathematical Reviews number (MathSciNet)
MR2759171
Zentralblatt MATH identifier
1213.60033
Keywords
compound Poisson approximation geometric distribution local norm Markov binomial distribution signed compound Poisson measure total variation norm Wasserstein norm
Citation
Čekanavičius, V.; Vellaisamy, P. Compound Poisson and signed compound Poisson approximations to the Markov binomial law. Bernoulli 16 (2010), no. 4, 1114--1136. doi:10.3150/09-BEJ246. https://projecteuclid.org/euclid.bj/1290092898
References
- [1] Barbour, A.D. and Čekanavičius, V. (2002). Total variation asymptotics for sums of independent integer random variables. Ann. Probab. 30 509–545.Mathematical Reviews (MathSciNet): MR1905850
Zentralblatt MATH: 1018.60049
Digital Object Identifier: doi:10.1214/aop/1023481001
Project Euclid: euclid.aop/1023481001 - [2] Barbour, A.D., Holst, L. and Janson, S. (1992). Poisson Approximation. Oxford: Clarendon.
- [3] Bhat, U.N., Lal, R. and Karunaratne, M. (1990). A sequential inspection plan for Markov-dependent production process. IIE Trans. 22 56–64.
- [4] Campbell, S.A., Godbole, A.P. and Schaller, S. (1994). Discriminating between sequences of Bernoulli and Markov–Bernoulli trials. Comm. Statist. Theory Methods 23 2787–2814.
- [5] Čekanavičius, V. and Mikalauskas, M. (1999). Signed Poisson approximations for Markov chains. Stochastic Process. Appl. 82 205–227.Mathematical Reviews (MathSciNet): MR1700006
Zentralblatt MATH: 0997.60073
Digital Object Identifier: doi:10.1016/S0304-4149(99)00017-4 - [6] Čekanavičius, V. and Mikalauskas, M. (2001). Local theorems for the Markov binomial distribution. Lithuanian Math. J. 41 219–231.
- [7] Čekanavičius, V. and Roos, B. (2007). Binomial approximation to the Markov binomial distribution. Acta Appl. Math. 96 137–146.Mathematical Reviews (MathSciNet): MR2327530
Digital Object Identifier: doi:10.1007/s10440-007-9114-1
Zentralblatt MATH: 1118.60061 - [8] Chryssaphinou, O. and Vaggelatou, E. (2002). Compound Poisson approximation for multiple runs in a Markov chain. Ann. Inst. Statist. Math. 54 411–424.Mathematical Reviews (MathSciNet): MR1910182
Zentralblatt MATH: 1018.60079
Digital Object Identifier: doi:10.1023/A:1022438422611 - [9] Dhaene, J. and De Pril, N. (1994). On a class of approximative computation methods in individual risk model. Insurance Math. Econom. 14 181–196.
- [10] Dhaene, J. and Goovaerts, M.J. (1997). On the dependency of risks in the individual life model. Insurance Math. Econom. 19 243–253.
- [11] Deheuvels, P. and Pfeifer, D. (1988). On a relationship between Uspensky’s theorem and Poisson approximations. Ann. Inst. Statist. Math. 40 671–681.Mathematical Reviews (MathSciNet): MR996692
Zentralblatt MATH: 0675.60027
Digital Object Identifier: doi:10.1007/BF00049425 - [12] Dobrushin, R.L. (1953). Limit theorems for a Markov chain of two states. Izv. Akad. Nauk USSR Ser. Mat. 17 291–330 (in Russian). English translation in Select. Transl. Math. Stat. and Probab. 1 (1961) 97–134.Mathematical Reviews (MathSciNet): MR58150
- [13] Erhardsson, T. (1999). Compound Poisson approximation for Markov chains using Stein’s method. Ann. Probab. 27 565–596.Mathematical Reviews (MathSciNet): MR1681149
Zentralblatt MATH: 0942.60007
Digital Object Identifier: doi:10.1214/aop/1022677272
Project Euclid: euclid.aop/1022677272 - [14] Gani, J. (1982). On the probability generating function of the sum of Markov–Bernoulli random variables. J. Appl. Probab. (Special vol.) 19A 321–326.Mathematical Reviews (MathSciNet): MR633174
- [15] Gerber, H.U. (1984). Error bounds for the compound Poisson approximation. Insurance Math. Econom. 3 191–194.
- [16] Goovaerts, M.J. and Dhaene, J. (1996). The compound Poisson approximation for a portfolio of dependent risks. Insurance Math. Econom. 18 81–85.
- [17] Hipp, C. (1986). Improved approximations for the aggregate claims distribution in the individual model. Astin Bull. 16 89–100.
- [18] Hirano, K. and Aki, S. (1993). On number of success runs of specified length in a two-state Markov chain. Statist. Sinica 3 313–320.
- [19] Hsiau, S.R. (1997). Compound Poisson limit theorems for Markov chains. J. Appl. Probab. 34 24–34.Mathematical Reviews (MathSciNet): MR1429051
Zentralblatt MATH: 0874.60007
Digital Object Identifier: doi:10.2307/3215171 - [20] Koopman, B.O. (1950). A generalization of Poisson’s distribution for Markoff chains. Proc. Natl. Acad. Sci. USA 36 202–207.Mathematical Reviews (MathSciNet): MR33467
Zentralblatt MATH: 0037.08502
Digital Object Identifier: doi:10.1073/pnas.36.3.202 - [21] Kornya, P. (1983). Distribution of aggregate claims in the individual risk theory model. Trans. Soc. Actuaries 35 823–858.
- [22] Kruopis, J. (1986). Precision of approximation of the generalized binomial distribution by convolutions of Poisson measures. Lithuanian Math. J. 26 37–49.
- [23] Le Cam, L. (1960). An approximation theorem for the Poisson binomial distribution. Pacific J. Math. 10 1181–1197.Mathematical Reviews (MathSciNet): MR142174
Zentralblatt MATH: 0118.33601
Project Euclid: euclid.pjm/1103038058 - [24] Nelson, B.L. (1993). Estimating acceptance sampling plans for dependent production processes. IIE Trans. 25 11–18.
- [25] Presman, É.L. (1983). Approximation of binomial distributions by infinitely divisible ones. Teor. Veroyatn. i Primen. 28 372–382 (Russian). English translation in Theory Probab. Appl. 28 393–403, 1984.Mathematical Reviews (MathSciNet): MR700218
- [26] Ribas, C., Marin-Solano, J. and Alegre, A. (2003). On the computation of the aggregate claims distribution in the individual life model with bivariate dependencies. Insurance Math. Econom. 32 201–215.
- [27] Roos, B. (2001). Sharp constants in the Poisson approximation. Statist. Probab. Lett. 52 155–168.
- [28] Roos, B. (2003). Poisson approximation via the convolution with Kornya–Presman signed measures. Teor. Veroyatn. i Primen. 48 628–632. Reprinted in Theory Probab. Appl. 48 555–560, 2004.Mathematical Reviews (MathSciNet): MR2141358
- [29] Sahinoglu, M. (1990). The limit of sum of Markov Bernoulli variables in system reliability evaluation. IEEE Trans. Reliability 39 46–50.
- [30] Serfling, R.J. (1975). A general Poisson approximation theorem. Ann. Probab. 3 726–731.Mathematical Reviews (MathSciNet): MR380946
Digital Object Identifier: doi:10.1214/aop/1176996313
Zentralblatt MATH: 0321.60018
Project Euclid: euclid.aop/1176996313 - [31] Serfozo, R.F. (1986). Compound Poisson approximations for sums of random variables. Ann. Probab. 14 1391–1398. Correction: Ann. Probab. 16 (1988) 429–430.Mathematical Reviews (MathSciNet): MR866359
Digital Object Identifier: doi:10.1214/aop/1176992379
Project Euclid: euclid.aop/1176992379
Zentralblatt MATH: 0604.60016 - [32] Šiaulys, J. and Čekanavičius, V. (1988). Approximation of distributions of integer-valued additive functions by discrete charges I. Lithuanian Math. J. 28 392–401.
- [33] Vellaisamy, P. (2004). Poisson approximation for (k1, k2)-events via the Stein–Chen method. J. Appl. Probab. 41 1081–1092.Mathematical Reviews (MathSciNet): MR2122802
Zentralblatt MATH: 1062.62025
Digital Object Identifier: doi:10.1239/jap/1101840553
Project Euclid: euclid.jap/1101840553 - [34] Vellaisamy, P. and Chaudhuri, B. (1999). On compound Poisson approximation for sums of random variables. Statist. Probab. Lett. 41 179–189.
- [35] Vellaisamy, P. and Sankar, S. (2001). Sequetntial and systematic sampling plans for the Markov-dependent production process. Naval Res. Logist. 48 451–467.Mathematical Reviews (MathSciNet): MR1845817
Digital Object Identifier: doi:10.1002/nav.1028
Zentralblatt MATH: 1009.90126 - [36] Wang, Y.H. (1981). On the limit of the Markov binomial distribution. J. Appl. Probab. 18 937–942.Mathematical Reviews (MathSciNet): MR633240
Zentralblatt MATH: 0475.60050
Digital Object Identifier: doi:10.2307/3213068 - [37] Wang, Y.H. (1992). Approximating kth-order two-state Markov chains. J. Appl. Probab. 29 861–868.Mathematical Reviews (MathSciNet): MR1188541
Zentralblatt MATH: 0765.60070
Digital Object Identifier: doi:10.2307/3214718 - [38] Wang, Y.H., Chang, H.F. and Chen, S.Y. (2003). Convergence theorems for the lengths of consecutive successes of Markov Bernoulli sequences. J. Appl. Probab. 40 741–749.Mathematical Reviews (MathSciNet): MR1993264
Zentralblatt MATH: 1045.60025
Digital Object Identifier: doi:10.1239/jap/1059060899
Project Euclid: euclid.jap/1059060899

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Sharp estimates in signed Poisson approximation of Poisson mixtures
Antonio Adell, José and Lekuona, Alberto, Bernoulli, 2005 - Signed Poisson approximation: a possible alternative to normal and Poisson laws
Cekanavicius, Vydas and Kruopis, Julius, Bernoulli, 2000 - A new method for obtaining sharp compound Poisson approximation error estimates for sums of locally dependent random variables
Boutsikas, Michael V. and Vaggelatou, Eutichia, Bernoulli, 2010
- Sharp estimates in signed Poisson approximation of Poisson mixtures
Antonio Adell, José and Lekuona, Alberto, Bernoulli, 2005 - Signed Poisson approximation: a possible alternative to normal and Poisson laws
Cekanavicius, Vydas and Kruopis, Julius, Bernoulli, 2000 - A new method for obtaining sharp compound Poisson approximation error estimates for sums of locally dependent random variables
Boutsikas, Michael V. and Vaggelatou, Eutichia, Bernoulli, 2010 - Table of contents, Bernoulli Journal, vol. 5, no. 6 (1999)
, 1999 - On Stein operators for discrete approximations
Upadhye, Neelesh S., Čekanavičius, Vydas, and Vellaisamy, P., Bernoulli, 2017 - Compound Poisson Approximation for Markov Chains using Stein’s
Method
Erhardsson, Torkel, The Annals of Probability, 1999 - Kerstan's method for compound Poisson approximation
Roos, Bero, The Annals of Probability, 2003 - Strong memoryless times and rare events in Markov renewal point processes
Erhardsson, Torkel, The Annals of Probability, 2004 - On Hipp's compound Poisson approximations via concentration functions
Roos, Bero, Bernoulli, 2005 - A Pólya approximation to the Poisson-binomial law
Skipper, Max, Journal of Applied Probability, 2012