• Bernoulli
  • Volume 16, Number 4 (2010), 953-970.

Ball throwing on spheres

Anne Estrade and Jacques Istas

Full-text: Open access


Ball throwing on Euclidean spaces has been considered for some time. A suitable renormalization leads to a fractional Brownian motion as limit object. In this paper, we investigate ball throwing on spheres. A different behavior is exhibited: we still get a Gaussian limit, but it is no longer a fractional Brownian motion. However, the limit is locally self-similar when the self-similarity index H is less than 1 / 2.

Article information

Bernoulli Volume 16, Number 4 (2010), 953-970.

First available in Project Euclid: 18 November 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

fractional Brownian motion overlapping balls scaling self-similarity spheres


Estrade, Anne; Istas, Jacques. Ball throwing on spheres. Bernoulli 16 (2010), no. 4, 953--970. doi:10.3150/09-BEJ241.

Export citation


  • [1] Benassi, A., Jaffard, S. and Roux, D. (1997). Gaussian processes and Pseudodifferential Elliptic operators. Rev. Mat. Iberoamericana 13 19–90.
  • [2] Biermé, H. and Estrade, A. (2006). Poisson random balls: Self-similarity and X-ray images. Adv. in Appl. Probab. 38 853–872.
  • [3] Biermé, H., Estrade, A. and Kaj, I. (2010). Self-similar random fields and rescaled random balls model. J. Theoret. Probab. To appear. Available at
  • [4] Cioczek-Georges, R. and Mandelbrot, B.B. (1995). A class of micropulses and antipersistent fractional Brownian motion. Stochastic Process. Appl. 60 1–18.
  • [5] Cohen, S. and Taqqu, M. (2004). Small and large scale behavior of the Poissonized Telecom Process. Methodol. Comput. Appl. Probab. 6 363–379.
  • [6] Dalay, D.J. (1971). The definition of multi-dimensional generalization of shot-noise. J. Appl. Probab. 8 128–135.
  • [7] Dobrushin, R.L. (1980). Automodel generalized random fields and their renorm group. In Multicomponent Random Systems (R.L. Dobrushin and Y.G. Sinai, eds.) 153–198. New York: Dekker.
  • [8] Faraut, J. (1973). Fonction brownienne sur une variété riemannienne. Séminaire de probabilités de Strasbourg 7 61–76.
  • [9] Gangolli, R. (1967). Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Brownian motion of several parameters. Ann. Inst. H. Poincaré 3 121–226.
  • [10] Helgason, S. (1962). Differential Geometry and Symmetric Spaces. New York: Academic Press.
  • [11] Heinrich, L. and Schmidt, V. (1985). Normal convergence of multidimensional shot noise and rate of this convergence. Adv. in Appl. Probab. 17 709–730.
  • [12] Kaj, I., Leskelä, L., Norros, I. and Schmidt, V. (2007). Scaling limits for random fields with long-range dependence. Ann. Probab. 35 528–550.
  • [13] Istas, J. (2005). Spherical and hyperbolic fractional Brownian motion. Electron. Commun. Probab. 10 254–262.
  • [14] Istas, J. (2006). On fractional stable fields indexed by metric spaces. Electron. Commun. Probab. 11 242–251.
  • [15] Istas, J. and Lacaux, C. (2009). On locally self-similar fractional random fields indexed by a manifold. Preprint.
  • [16] Kolmogorov, A. (1940). Wienersche Spiralen und einige andere interessante Kurven im Hilbertsche Raum (German). C. R. (Dokl.) Acad. Sci. URSS 26 115–118.
  • [17] Lévy, P. (1965). Processus stochastiques et mouvement brownien. Paris: Gauthier-Villars.
  • [18] Mandelbrot, B.B. and Van Ness, J.W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Review 10 422–437.
  • [19] Samorodnitsky, G. and Taqqu, M. (1994). Stable Non-Gaussian Random Processes: Stochastic Models With Infinite Variance. New York: Chapman & Hall.
  • [20] Serra, J. (1984). Image Analysis and Mathematical Morphology. London: Academic Press.
  • [21] Stoyan, D., Kendall, W.S. and Mecke, J. (1995). Stochastic Geometry and Its Applications, 2nd ed. Chichester: Wiley.
  • [22] Takenaka, S. (1991). Integral-geometric construction of self-similar stable processes. Nagoya Math. J. 123 1–12.
  • [23] Takenaka, S., Kubo, I. and Urakawa, H. (1981). Brownian motion parametrized with metric space of constant curvature. Nagoya Math. J. 82 131–140.
  • [24] Wicksell, S.D. (1925). The corpuscle problem: A mathematical study of a biometric problem. Biometrika 17 84–99.
  • [25] Willingsler, W., Taqqu, M.S., Sherman, R. and Wilson, D.V. (1997). Self-similarity through high variability: Statistical analysis of Ethernet LAN traffic at source level. IEE/ACM Transactions in Networking 5 71–86.