Bernoulli

  • Bernoulli
  • Volume 16, Number 3 (2010), 730-758.

Varying-coefficient functional linear regression

Yichao Wu, Jianqing Fan, and Hans-Georg Müller

Full-text: Open access

Abstract

Functional linear regression analysis aims to model regression relations which include a functional predictor. The analog of the regression parameter vector or matrix in conventional multivariate or multiple-response linear regression models is a regression parameter function in one or two arguments. If, in addition, one has scalar predictors, as is often the case in applications to longitudinal studies, the question arises how to incorporate these into a functional regression model. We study a varying-coefficient approach where the scalar covariates are modeled as additional arguments of the regression parameter function. This extension of the functional linear regression model is analogous to the extension of conventional linear regression models to varying-coefficient models and shares its advantages, such as increased flexibility; however, the details of this extension are more challenging in the functional case. Our methodology combines smoothing methods with regularization by truncation at a finite number of functional principal components. A practical version is developed and is shown to perform better than functional linear regression for longitudinal data. We investigate the asymptotic properties of varying-coefficient functional linear regression and establish consistency properties.

Article information

Source
Bernoulli, Volume 16, Number 3 (2010), 730-758.

Dates
First available in Project Euclid: 6 August 2010

Permanent link to this document
https://projecteuclid.org/euclid.bj/1281099882

Digital Object Identifier
doi:10.3150/09-BEJ231

Mathematical Reviews number (MathSciNet)
MR2730646

Zentralblatt MATH identifier
1220.62046

Keywords
asymptotics eigenfunctions functional data analysis local polynomial smoothing longitudinal data varying-coefficient models

Citation

Wu, Yichao; Fan, Jianqing; Müller, Hans-Georg. Varying-coefficient functional linear regression. Bernoulli 16 (2010), no. 3, 730--758. doi:10.3150/09-BEJ231. https://projecteuclid.org/euclid.bj/1281099882


Export citation

References

  • Besse, P. and Ramsay, J.O. (1986). Principal components analysis of sampled functions., Psychometrika 51 285–311.
  • Cai, T. and Hall, P. (2006). Prediction in functional linear regression., Ann. Statist. 34 2159–2179.
  • Cardot, H. (2007). Conditional functional principal components analysis., Scand. J. Statist. 34 317–335.
  • Cardot, H., Ferraty, F. and Sarda, P. (2003). Spline estimators for the functional linear model., Statist. Sin. 13 571–591.
  • Cardot, H. and Sarda, P. (2008). Varying-coefficient functional linear regression models., Comm. Statist. Theory Methods 37 3186–3203.
  • Carey, J.R., Liedo, P., Müller, H.G., Wang, J.L. and Chiou, J.M. (1998). Relationship of age patterns of fecundity to mortality, longevity, and lifetime reproduction in a large cohort of mediterranean fruit fly females., Journals of Gerontology Series A: Biological Sciences and Medical Sciences 53 245–251.
  • Courant, R. and Hilbert, D. (1953)., Methods of Mathematical Physics. New York: Wiley.
  • Cuevas, A., Febrero, M. and Fraiman, R. (2002). Linear functional regression: The case of fixed design and functional response., Canad. J. Statist. 30 285–300.
  • Fan, J. and Gijbels, I. (1996)., Local Polynomial Modelling and Its Applications. London: Chapman & Hall.
  • Fan, J., Huang, T. and Li, R. (2007). Analysis of longitudinal data with semiparametric estimation of covariance function., J. Amer. Statist. Assoc. 35 632–641.
  • Fan, J. and Zhang, J.-T. (2000). Two-step estimation of functional linear models with applications to longitudinal data., J. Roy. Statist. Soc. Ser. B 62 303–322.
  • Hall, P. and Horowitz, J.L. (2007). Methodology and convergence rates for functional linear regression., Ann. Statist. 35 70–91.
  • Hall, P., Müller, H. and Wang, J. (2006). Properties of principal component methods for functional and longitudinal data analysis., Ann. Statist. 34 1493–1517.
  • James, G.M., Hastie, T.J. and Sugar, C.A. (2000). Principal component models for sparse functional data., Biometrika 87 587–602.
  • Liu, B. and Müller, H. (2009). Estimating derivatives for samples of sparsely observed functions, with application to on-line auction dynamics., J. Amer. Statist. Assoc. 104 704–717.
  • Müller, H.G., Carey, J.R., Wu, D., Liedo, P. and Vaupel, J.W. (2001). Reproductive potential predicts longevity of female Mediterranean fruit flies., Proc. Roy. Soc. Ser. B 268 445–450.
  • Pearson, J.D., Morrell, C.H., Brant, L.J., Landis, P.K. and Fleg, J.L. (1997). Age-associated changes in blood pressure in a longitudinal study of healthy men and women., Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 52 177–183.
  • Ramsay, J. and Dalzell, C.J. (1991). Some tools for functional data analysis (with discussion)., J. Roy. Statist. Soc. Ser. B 53 539–572.
  • Ramsay, J.O. and Silverman, B.W. (2002)., Applied Functional Data Analysis: Methods and Case Studies. New York: Springer.
  • Ramsay, J.O. and Silverman, B.W. (2005)., Functional Data Analysis. New York: Springer.
  • Rice, J. and Wu, C. (2001). Nonparametric mixed effects models for unequally sampled noisy curves., Biometrics 57 253–259.
  • Rice, J.A. and Silverman, B.W. (1991). Estimating the mean and covariance structure nonparametrically when the data are curves., J. Roy. Statist. Soc. Ser. B 53 233–243.
  • Shock, N.W., Greulich, R.C., Andres, R., Lakatta, E.G., Arenberg, D. and Tobin, J.D. (1984). Normal human aging: The Baltimore longitudinal study of aging. NIH Publication No. 84-2450, U.S. Government Printing Office., Washington, DC.
  • Silverman, B.W. (1996). Smoothed functional principal components analysis by choice of norm., Ann. Statist. 24 1–24.
  • Staniswalis, J.-G. and Lee, J.-J. (1998). Nonparametric regression analysis of longitudinal data., J. Amer. Statist. Assoc. 93 1403–1418.
  • Wahba, G. (1990)., Spline Models for Observational Data. Philadelphia, PA: Society for Industrial and Applied Mathematics.
  • Yao, F., Müller, H.-G. and Wang, J.-L. (2005a). Functional data analysis for sparse longitudinal data., J. Amer. Statist. Assoc. 100 577–590.
  • Yao, F., Müller, H.-G. and Wang, J.-L. (2005b). Functional linear regression analysis for longitudinal data., Ann. Statist. 33 2873–2903.
  • Zhang, C.M., Lu, Y.F., Johnstone, T., Oaks, T. and Davidson, R.J. (2008). Efficient modeling and inference for event-related functional fMRI data., Comput. Statist. Data. Anal. 52 4859–4871.