Bernoulli

  • Bernoulli
  • Volume 16, Number 2 (2010), 514-542.

Conditional density estimation in a censored single-index regression model

Olivier Bouaziz and Olivier Lopez

Full-text: Open access

Abstract

Under a single-index regression assumption, we introduce a new semiparametric procedure to estimate a conditional density of a censored response. The regression model can be seen as a generalization of the Cox regression model and also as a profitable tool for performing dimension reduction under censoring. This technique extends the results of Delecroix et al. [J. Multivariate Anal. 86 (2003) 213–226]. We derive consistency and asymptotic normality of our estimator of the index parameter by proving its asymptotic equivalence with the (uncomputable) maximum likelihood estimator, using martingales results for counting processes and arguments from empirical processes theory. Furthermore, we provide a new adaptive procedure which allows us both to choose the smoothing parameter involved in our approach and to circumvent the weak performances of the Kaplan–Meier estimator [Amer. Statist. Assoc. 53 (1958) 457–481] in the right-tail of the distribution. By means of a simulation study, we study the behavior of our estimator for small samples.

Article information

Source
Bernoulli, Volume 16, Number 2 (2010), 514-542.

Dates
First available in Project Euclid: 25 May 2010

Permanent link to this document
https://projecteuclid.org/euclid.bj/1274821082

Digital Object Identifier
doi:10.3150/09-BEJ221

Mathematical Reviews number (MathSciNet)
MR2668913

Zentralblatt MATH identifier
1323.62095

Keywords
asymptotic normality censoring empirical processes martingales for counting processes pseudo-maximum likelihood single-index model

Citation

Bouaziz, Olivier; Lopez, Olivier. Conditional density estimation in a censored single-index regression model. Bernoulli 16 (2010), no. 2, 514--542. doi:10.3150/09-BEJ221. https://projecteuclid.org/euclid.bj/1274821082


Export citation

References

  • Bashtannyk, D.M. and Hyndman, R.J. (2001). Bandwidth selection for kernel conditional density estimation. Comput. Statist. Data Anal. 36 279–298.
  • Bosq, D. and Lecoutre, J.P. (1997). Théorie de l’estimation fonctionnelle. Economie et statistiques avancées 3. Paris: Economica.
  • Brunel, E. and Comte, F. (2006). Adaptive nonparametric regression estimation in presence of right censoring. Math. Methods Statist. 15 233–255.
  • Cox, D.R. (1972). Regression models and life-tables. J. Roy. Statist. Soc. Ser. B 34 187–220.
  • Delecroix, M., Härdle, W. and Hristache, M. (2003). Efficient estimation in conditional single-index regression. J. Multivariate Anal. 86 213–226.
  • Delecroix, M., Hristache, M. and Patilea, V. (2006). On semiparametric M-estimation in single-index regression. J. Statist. Plann. Inference 136 730–769.
  • Delecroix, M., Lopez, O. and Patilea, V. (2008). Nonlinear censored regression using synthetic data. Scand. J. Statist. 35 248–265.
  • Dominitz, J. and Sherman, R.P. (2005). Some convergence theory for iterative estimation procedures with an application to semiparametric estimation. Econometric Theory 21 838–863.
  • Einmahl, U. and Mason, D.M. (2005). Uniform in bandwidth consistency of kernel-type function estimators. Ann. Statist. 33 1380–1403.
  • Fan, J. and Yim, T.H. (2004). A crossvalidation method for estimating conditional densities. Biometrika 91 819–834.
  • Fleming, T.R. and Harrington, D.P. (1991). Counting Processes and Survival Analysis. New York: Wiley.
  • Gannoun, A., Saracco, J., Yuan, A. and Bonney, G.E. (2005). Non-parametric quantile regression with censored data. Scand. J. Statist. 32 527–550.
  • Gill, R. (1983). Large sample behaviour of the product-limit estimator on the whole line. Ann. Statist. 11 49–58.
  • Heuchenne, C. and van Keilegom, I. (2007). Nonlinear regression with censored data. Technometrics 49 34–44.
  • Ichimura, H. (1993). Semiparametric least squares (SLS) and weighted SLS estimation of single-index models. J. Econometrics 58 71–120.
  • Kaplan, E.L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. J. Amer. Statist. Assoc. 53 457–481.
  • Koul, H., Susarla, V. and van Ryzin, J. (1981). Regression analysis with randomly right-censored data. Ann. Statist. 9 1276–1288.
  • Lenglart, E. (1977). Relation de domination entre deux processus. Ann. Inst. H. Poincaré Sect. B (N.S.) 13 171–179.
  • Lopez, O. (2009). Single-index regression models with right-censored responses. J. Statist. Plann. Inference 139 1082–1097.
  • Lopez, O. and Patilea, V. (2009). Nonparametric lack-of-fit tests for parametric mean-regression models with censored data. J. Multivariate Anal. 100 210–230.
  • Lu, X. and Burke, M.D. (2005). Censored multiple regression by the method of average derivatives. J. Multivariate Anal. 95 182–205.
  • Miller, R. and Halpern, J. (1982). Regression with censored data. Biometrika 69 521–531.
  • Nolan, D. and Pollard, D. (1987). U-processes: Rates of convergence. Ann. Statist. 15 780–799.
  • Sánchez Sellero, C., González Manteiga, W. and Van Keilegom, I. (2005). Uniform representation of product-limit integrals with applications. Scand. J. Statist. 32 563–581.
  • Satten, G.A. and Datta, S. (2001). The Kaplan–Meier estimator as an inverse-probability-of-censoring weighted average. Amer. Statist. 55 207–210.
  • Sherman, R.P. (1994). Maximal inequalities for degenerate U-processes with applications to optimization estimators. Ann. Statist. 22 439–459.
  • Stute, W., González Manteiga, W. and Sánchez Sellero, C. (2000). Nonparametric model checks in censored regression. Comm. Statist. Theory Methods 29 1611–1629.
  • Stute, W. (1993). Consistent estimation under random censorship when covariables are present. J. Multivariate Anal. 45 89–103.
  • Stute, W. (1995). The central limit theorem under random censorship. Ann. Statist. 23 422–439.
  • Stute, W. (1996). Distributional convergence under random censorship when covariables are present. Scand. J. Statist. 23 461–471.
  • Stute, W. (1999). Nonlinear censored regression. Statist. Sinica 9 1089–1102.
  • Talagrand, M. (1994). Sharper bounds for Gaussian and empirical processes. Ann. Probab. 22 28–76.
  • Van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3. Cambridge: Cambridge Univ. Press.
  • Van der Vaart, A.W. and Wellner, J.A. (1996). Weak Convergence and Empirical Processes. New York: Springer.
  • Wei, L.J., Ying, Z. and Lin, D.Y. (1990). Linear regression analysis of censored survival data based on rank tests. Biometrika 77 845–851.
  • Zhou, M. (1992). Asymptotic normality of the “synthetic data” regression estimator for censored survival data. Ann. Statist. 20 1002–1021.