• Bernoulli
  • Volume 16, Number 1 (2010), 155-180.

On the posterior distribution of classes of random means

Lancelot F. James, Antonio Lijoi, and Igor Prünster

Full-text: Open access


The study of properties of mean functionals of random probability measures is an important area of research in the theory of Bayesian nonparametric statistics. Many results are now known for random Dirichlet means, but little is known, especially in terms of posterior distributions, for classes of priors beyond the Dirichlet process. In this paper, we consider normalized random measures with independent increments (NRMI’s) and mixtures of NRMI. In both cases, we are able to provide exact expressions for the posterior distribution of their means. These general results are then specialized, leading to distributional results for means of two important particular cases of NRMI’s and also of the two-parameter Poisson–Dirichlet process.

Article information

Bernoulli, Volume 16, Number 1 (2010), 155-180.

First available in Project Euclid: 12 February 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Bayesian nonparametrics completely random measures means of random probability measures normalized random measures Poisson–Dirichlet process posterior distribution species sampling models


James, Lancelot F.; Lijoi, Antonio; Prünster, Igor. On the posterior distribution of classes of random means. Bernoulli 16 (2010), no. 1, 155--180. doi:10.3150/09-BEJ200.

Export citation


  • [1] Billingsley, P. (1995). Probability and Measure, 3rd ed. New York: Wiley.
  • [2] Brix, A. (1999). Generalized gamma measures and shot-noise Cox processes. Adv. in Appl. Probab. 31 929–953.
  • [3] Carlton, M.A. (2002). A family of densities derived from the three-parameter Dirichlet process. J. Appl. Probab. 39 764–774.
  • [4] Cifarelli, D.M. and Regazzini, E. (1979). Considerazioni generali sull’impostazione bayesiana di problemi non parametrici. Le medie associative nel contesto del processo aleatorio di Dirichlet. Parte II. Rivista di matematica per le scienze economiche e sociali 1 95–111.
  • [5] Cifarelli, D.M. and Regazzini, E. (1990). Distribution functions of means of a Dirichlet process. Ann. Statist. 18 429–442. (Correction in Ann. Statist. 22 (1994) 1633–1634.)
  • [6] Cifarelli, D.M. and Mellili, E. (2000). Some new results for Dirichlet priors. Ann. Statist. 28 1390–1413.
  • [7] Diaconis, P. and Kemperman, J. (1996). Some new tools for Dirichlet priors. In Bayesian Statistics 5 (J.M. Bernardo, J.O. Berger, A.P. Dawid and A.F.M. Smith, eds.) 97–106. New York: Oxford Univ. Press.
  • [8] Jiang, T.J., Dickey, J.M. and Kuo, K.-L. (2004). A new multivariate transform and the distribution of a random functional of a Ferguson–Dirichlet process. Stochastic Process. Appl. 111 77–95.
  • [9] Dykstra, R.L. and Laud, P.W. (1981). A Bayesian nonparametric approach to reliability. Ann. Statist. 9 356–367.
  • [10] Epifani, I., Lijoi, A. and Prünster, I. (2003). Exponential functionals and means of neutral to right priors. Biometrika 90 791–808.
  • [11] Feigin, P.D. and Tweedie, R.L. (1989). Linear functionals and Markov chains associated with Dirichlet processes. Math. Proc. Cambridge Philos. Soc. 105 579–585.
  • [12] Ferguson, T.S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209–230.
  • [13] Hannum, R.C., Hollander, M. and Langberg, N.A. (1981). Distributional results for random functionals of a Dirichlet process. Ann. Probab. 9 665–670.
  • [14] Hill, T. and Monticino, M. (1998). Constructions of random distributions via sequential barycenters. Ann. Statist. 26 1242–1253.
  • [15] Gradshteyn, I.S. and Ryzhik, J.M. (2000). Table of Integrals, Series, and Products, 6th ed. New York: Academic Press.
  • [16] Hjort, N.L. (2003). Topics in non-parametric Bayesian statistics. In Highly Structured Stochastic Systems (P.J. Green, N.L. Hjort and S. Richardson, eds.). Oxford Statistical Science Series 27 455–478. Oxford: Oxford Univ. Press.
  • [17] Hjort, N.L. and Ongaro, A. (2005). Exact inference for random Dirichlet means. Stat. Inference Stoch. Process. 8 227–254.
  • [18] Ishwaran, H. and James, L.F. (2003). Generalized weighted Chinese restaurant processes for species sampling mixture models. Statist. Sinica 13 1211–1235.
  • [19] James, L.F. (2005). Functionals of Dirichlet processes, the Cifarelli–Regazzini identity and Beta–Gamma processes. Ann. Statist. 33 647–660.
  • [20] James, L.F. (2006). Poisson calculus for spatial neutral to the right processes. Ann. Statist. 34 416–440.
  • [21] James, L.F. (2008). Large sample asymptotics for the two-parameter Poisson–Dirichlet process. In Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh (B. Clarke and S. Ghosal, eds.), IMS Collections 3 187–200. Beachwood, OH: Inst. Math. Statist.
  • [22] James, L.F., Lijoi, A. and Prünster, I. (2008). Distributions of linear functionals of two parameter Poisson–Dirichlet random measures. Ann. Appl. Probab. 18 521–551.
  • [23] James, L.F., Lijoi, A. and Prünster, I. (2009). Posterior analysis of normalized random measures with independent increments. Scand. J. Statist. 36 76–97.
  • [24] Jang, J., Lee, J. and Lee, S. (2009). Posterior consistency of species sampling models. Statist. Sinica. To appear.
  • [25] Kallenberg, O. (1986). Random Measures. Berlin: Akademie.
  • [26] Kingman, J.F.C. (1967). Completely random measures. Pacific J. Math. 21 59–78.
  • [27] Kingman, J.F.C. (1975). Random discrete distributions (with discussion). J. Roy. Statist. Soc. Ser. B 37 1–22.
  • [28] Kingman, J.F.C. (1993). Poisson Processes. Oxford: Oxford Univ. Press.
  • [29] Lijoi, A., Mena, R.H. and Prünster, I. (2005). Hierarchical mixture modelling with normalized inverse Gaussian priors. J. Amer. Statist. Assoc. 100 1278–1291.
  • [30] Lijoi, A., Prünster, I. and Walker, S.G. (2005). On consistency of nonparametric normal mixtures for Bayesian density estimation. J. Amer. Statist. Assoc. 100 1292–1296.
  • [31] Lijoi, A. and Regazzini, E. (2004). Means of a Dirichlet process and multiple hypergeometric functions. Ann. Probab. 32 1469–1495.
  • [32] Lo, A.Y. (1984). On a class of Bayesian nonparametric estimates: I. Density estimates. Ann. Statist. 12 351–357.
  • [33] Nieto-Barajas, L.E., Prünster, I. and Walker, S.G. (2004). Normalized random measures driven by increasing additive processes. Ann. Statist. 32 2343–2360.
  • [34] Peccati, G. (2008). Multiple integral representation for functionals of Dirichlet processes. Bernoulli 14 91–124.
  • [35] Pitman, J. (1995). Exchangeable and partially exchangeable random partitions. Probab. Theory Related Fields 102 145–158.
  • [36] Pitman, J. (2003). Poisson–Kingman partitions. In Science and Statistics: A Festschrift for Terry Speed (D.R. Goldstein, ed.). Lecture Notes Monograph Series 40 1–35. Hayward, CA: Inst. Math. Statist.
  • [37] Pitman, J. (2006). Combinatorial stochastic processes. In Ecole dEté de Probabilités de Saint-Flour XXXII. Lecture Notes in Mathematics 1875. Berlin: Springer.
  • [38] Pulkkinen, O. (2007). Boundary driven zero-range processes in random media. J. Statist. Phys. 128 1289–1305.
  • [39] Regazzini, E., Guglielmi, A. and Di Nunno, G. (2002). Theory and numerical analysis for exact distribution of functionals of a Dirichlet process. Ann. Statist. 30 1376–1411.
  • [40] Regazzini, E., Lijoi, A. and Prünster, I. (2003). Distributional results for means of random measures with independent increments. Ann. Statist. 31 560–585.
  • [41] Regazzini, E. and Sazonov, V.V. (2001). Approximation of laws of random probabilities by mixtures of Dirichlet distributions with applications to nonparametric Bayesian inference. Theory Probab. Appl. 45 93–110.
  • [42] Vershik, A., Yor, M. and Tsilevich, N. (2001). On the Markov–Krein identity and quasi-invariance of the gamma process. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 283 21–36 (in Russian). (English translation in J. Math. Sci. 121 (2004) 2303–2310.)
  • [43] Yamato, H. (1984). Characteristic functions of means of distributions chosen from a Dirichlet process. Ann. Probab. 12 262–267.