• Bernoulli
  • Volume 15, Number 4 (2009), 1154-1178.

Optimal rates for plug-in estimators of density level sets

Philippe Rigollet and Régis Vert

Full-text: Open access


In the context of density level set estimation, we study the convergence of general plug-in methods under two main assumptions on the density for a given level $λ$. More precisely, it is assumed that the density (i) is smooth in a neighborhood of $λ$ and (ii) has $γ$-exponent at level $λ$. Condition (i) ensures that the density can be estimated at a standard nonparametric rate and condition (ii) is similar to Tsybakov’s margin assumption which is stated for the classification framework. Under these assumptions, we derive optimal rates of convergence for plug-in estimators. Explicit convergence rates are given for plug-in estimators based on kernel density estimators when the underlying measure is the Lebesgue measure. Lower bounds proving optimality of the rates in a minimax sense when the density is Hölder smooth are also provided.

Article information

Bernoulli, Volume 15, Number 4 (2009), 1154-1178.

First available in Project Euclid: 8 January 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

density level sets kernel density estimators minimax lower bounds plug-in estimators rates of convergence


Rigollet, Philippe; Vert, Régis. Optimal rates for plug-in estimators of density level sets. Bernoulli 15 (2009), no. 4, 1154--1178. doi:10.3150/09-BEJ184.

Export citation


  • Audibert, J.-Y. and Tsybakov, A. (2005). Fast learning rates for plug-in classifiers under the margin condition. Technical report, Laboratoire de Probabilités et Modèles Aléatoires de Paris 6. Available at
  • Audibert, J.-Y. and Tsybakov, A. (2007). Fast learning rates for plug-in classifiers. Ann. Statist. 35 608–633.
  • Baíllo, A. (2003). Total error in a plug-in estimator of level sets. Statist. Probab. Lett. 65 411–417.
  • Baíllo, A., Cuesta-Albertos, J.A. and Cuevas, A. (2001). Convergence rates in nonparametric estimation of level sets. Statist. Probab. Lett. 53 27–35.
  • Birgé, L. and Massart, P. (2001). Gaussian model selection. J. Eur. Math. Soc. (JEMS) 3 203–268.
  • Cuevas, A. and Fraiman, R. (1997). A plug-in approach to support estimation. Ann. Statist. 25 2300–2312.
  • Cuevas, A., González-Manteiga, W. and Rodríguez-Casal, A. (2006). Plug-in estimation of general level sets. Aust. N. Z. J. Stat. 48 7–19.
  • Devroye, L., Györfi, L. and Lugosi, G. (1996). A Probabilistic Theory of Pattern Recognition. Applications of Mathematics (New York) 31. New York: Springer.
  • Devroye, L. and Wise, G.L. (1980). Detection of abnormal behavior via nonparametric estimation of the support. SIAM J. Appl. Math. 38 480–488.
  • Gayraud, G. and Rousseau, J. (2005). Rates of convergence for a Bayesian level set estimation. Scand. J. Statist. 32 639–660.
  • Hartigan, J.A. (1987). Estimation of a convex density contour in two dimensions. J. Amer. Statist. Assoc. 82 267–270.
  • Hartigan, J.H. (1975). Clustering Algorithms. New York: Wiley.
  • Mammen, E. and Tsybakov, A.B. (1999). Smooth discrimination analysis. Ann. Statist. 27 1808–1829.
  • Molchanov, I.S. (1998). A limit theorem for solutions of inequalities. Scand. J. Statist. 25 235–242.
  • Müller, D.W. and Sawitzki, G. (1987). Using excess mass estimates to investigate the modality of a distribution. Technical Report 398, SFB 123, Univ. Heidelberg.
  • Polonik, W. (1995). Measuring mass concentrations and estimating density contour clusters – an excess mass approach. Ann. Statist. 23 855–881.
  • Polonik, W. (1997). Minimum volume sets and generalized quantile processes. Stochastic Process. Appl. 69 1–24.
  • Rigollet, P. (2006). Oracle inequalities, aggregation and adaptation. Ph.D. thesis, Université Paris–VI. Available at
  • Rigollet, P. (2007). Generalization error bounds in semi-supervised classification under the cluster assumption. J. Mach. Learn. Res. 8 1369–1392.
  • Scott, C.D. and Nowak, R.D. (2006). Learning minimum volume sets. J. Mach. Learn. Res. 7 665–704.
  • Steinwart, I., Hush, D. and Scovel, C. (2005). A classification framework for anomaly detection. J. Mach. Learn. Res. 6 211–232.
  • Stuetzle, W. (2003). Estimating the cluster type of a density by analyzing the minimal spanning tree of a sample. J. Classification 20 25–47.
  • Tarigan, B. and van de Geer, S. (2006). Classifiers of support vector machine type with l1 complexity regularization. Bernoulli 12 1045–1076.
  • Tsybakov, A.B. (1997). On nonparametric estimation of density level sets. Ann. Statist. 25 948–969.
  • Tsybakov, A.B. (2004). Optimal aggregation of classifiers in statistical learning. Ann. Statist. 32 135–166.
  • Tsybakov, A.B. (2009). Introduction to Nonparametric Estimation. Springer Series in Statistics. New York: Springer.
  • Tsybakov, A.B. and van de Geer, S.A. (2005). Square root penalty: Adaptation to the margin in classification and in edge estimation. Ann. Statist. 33 1203–1224.
  • Vapnik, V. (1998). Statistical Learning Theory. New York: Wiley.
  • Yang, Y. (1999). Minimax nonparametric classification – part I: Rates of convergence. IEEE Trans. Inform. Theory 45 2271–2284.