Bernoulli

  • Bernoulli
  • Volume 15, Number 3 (2009), 871-897.

Sharp weak-type inequalities for differentially subordinated martingales

Adam Osȩkowski

Full-text: Open access

Abstract

Let $M, N$ be real-valued martingales such that $N$ is differentially subordinate to $M$. The paper contains the proofs of the following weak-type inequalities:

(i) If $M\geq0$ and $0<p\leq1$, then \[ \Vert N\Vert_{p,\infty} \leq2\Vert M\Vert_p \] and the constant is the best possible.

(ii) If $M\geq0$ and $p\geq2$, then \[ \Vert N\Vert_{p,\infty} \leq\frac{p}{2}(p-1)^{-1/p}\Vert M\Vert_p \] and the constant is the best possible.

(iii) If $1\leq p\leq2$ and $M$ and $N$ are orthogonal, then \[ \Vert N\Vert_{p,\infty} \leq K_p \Vert M\Vert_p, \] where \[ K_p^p=\frac{1}{\Gamma(p+1)}\cdot\biggl(\frac{\pi}{2}\biggr)^{p-1}\cdot\frac{1+1/3^2+ 1/5^2+1/7^2+\cdots}{ 1-1/3^{p+1}+1/5^{p+1}-1/7^{p+1}+\cdots}. \] The constant is the best possible.

We also provide related estimates for harmonic functions on Euclidean domains.

Article information

Source
Bernoulli, Volume 15, Number 3 (2009), 871-897.

Dates
First available in Project Euclid: 28 August 2009

Permanent link to this document
https://projecteuclid.org/euclid.bj/1251463285

Digital Object Identifier
doi:10.3150/08-BEJ166

Mathematical Reviews number (MathSciNet)
MR2555203

Keywords
differential subordination harmonic function martingale

Citation

Osȩkowski, Adam. Sharp weak-type inequalities for differentially subordinated martingales. Bernoulli 15 (2009), no. 3, 871--897. doi:10.3150/08-BEJ166. https://projecteuclid.org/euclid.bj/1251463285


Export citation

References

  • Abramowitz, M. and Stegun, I.A., eds. (1992). Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. New York: Dover Publications. Reprint of the 1972 ed.
  • Bañuelos, R. and Wang, G. (1995). Sharp inequalities for martingales with applications to the Beurling–Ahlfors and Riesz transformations. Duke Math. J. 80 575–600.
  • Bañuelos, R. and Wang, G. (2000). Davis’s inequality for orthogonal martingales under differential subordination. Michigan Math. J. 47 109–124.
  • Burkholder, D.L. (1984). Boundary value problems and sharp inequalities for martingale transforms. Ann. Probab. 12 647–702.
  • Burkholder, D.L. (1989). Differential subordination of harmonic functions and martingales. In Harmonic Analysis and Partial Differential Equations (El Escorial, 1987). Lecture Notes in Mathematics 1384 1–23. Berlin: Springer.
  • Burkholder, D.L. (1991). Explorations in martingale theory and its applications. In École d’Ete de Probabilités de Saint-Flour XIX. Lecture Notes in Mathematics 1464 1–66. Berlin: Springer.
  • Burkholder, D.L. (1994). Strong differential subordination and stochastic integration. Ann. Probab. 22 995–1025.
  • Burkholder, D.L. (1999). Some extremal problems in martingale theory and harmonic analysis. In Harmonic Analysis and Partial Differential Equations (Chicago, IL) 99–115. Chicago, IL: Univ. Chicago Press.
  • Choi, C. (1998). A weak-type inequality for differentially subordinate harmonic functions. Trans. Amer. Math. Soc. 350 2687–2696.
  • Dellacherie, C. and Meyer, P.A. (1982). Probabilities and Potential B. Amsterdam: North-Holland.
  • Suh, Y. (2005). A sharp weak type (p, p) inequality (p>2) for martingale transforms and other subordinate martingales. Trans. Amer. Math. Soc. 357 1545–1564 (electronic).
  • Wang, G. (1995). Differential subordination and strong differential subordination for continuous time martingales and related sharp inequalities. Ann. Probab. 23 522–551.