Bernoulli

  • Bernoulli
  • Volume 15, Number 2 (2009), 438-463.

Subsampling needlet coefficients on the sphere

P. Baldi, G. Kerkyacharian, D. Marinucci, and D. Picard

Full-text: Open access

Abstract

In a recent paper, we analyzed the properties of a new kind of spherical wavelets (called needlets) for statistical inference procedures on spherical random fields; the investigation was mainly motivated by applications to cosmological data. In the present work, we exploit the asymptotic uncorrelation of random needlet coefficients at fixed angular distances to construct subsampling statistics evaluated on Voronoi cells on the sphere. We illustrate how such statistics can be used for isotropy tests and for bootstrap estimation of nuisance parameters, even when a single realization of the spherical random field is observed. The asymptotic theory is developed in detail in the high resolution sense.

Article information

Source
Bernoulli Volume 15, Number 2 (2009), 438-463.

Dates
First available in Project Euclid: 4 May 2009

Permanent link to this document
https://projecteuclid.org/euclid.bj/1241444897

Digital Object Identifier
doi:10.3150/08-BEJ164

Mathematical Reviews number (MathSciNet)
MR2543869

Zentralblatt MATH identifier
1200.62118

Keywords
random fields spherical wavelets subsampling Voronoi cells

Citation

Baldi, P.; Kerkyacharian, G.; Marinucci, D.; Picard, D. Subsampling needlet coefficients on the sphere. Bernoulli 15 (2009), no. 2, 438--463. doi:10.3150/08-BEJ164. https://projecteuclid.org/euclid.bj/1241444897


Export citation

References

  • [1] Antoine, J.-P. and Vandergheynst, P. (1999). Wavelets on the 2-sphere: A group-theoretical approach., Appl. Comput. Harmon. Anal. 7 262–291.
  • [2] Antoine, J.-P., Demanet, L., Jacques, L. and Vandergheynst, P. (2002). Wavelets on the sphere: Implementation and approximations., Appl. Comput. Harmon. Anal. 13 177–200.
  • [3] Baldi, P., Kerkyacharian, G., Marinucci, D. and Picard, D. (2008). High frequency asymptotics for wavelet-based tests for Gaussianity and Isotropy on the Torus., J. Multivariate Anal. 99 606–636.
  • [4] Baldi, P., Kerkyacharian, G., Marinucci, D. and Picard, D. (2006). Asymptotics for spherical needlets., Ann. Statist. 37 1150–1171.
  • [5] Billingsley, P. (1968)., Convergence of Probability Measures. New York: Wiley.
  • [6] Cabella, P., Hansen, F.K., Marinucci, D., Pagano, D. and Vittorio, N. (2004). Search for non-Gaussianity in pixel, harmonic and wavelets space: Compared and combined., Phys. Rev. D 69.
  • [7] DeJong, P. (1990). A central limit theorem for generalized multilinear forms., J. Multivariate Anal. 34 275–289.
  • [8] Dodelson, S. (2003)., Modern Cosmology. London: Academic Press.
  • [9] Guilloux, F., Fay, G. and Cardoso, J.-F. (2007). Practical wavelet design on the sphere., Appl. Comput. Harmon. Anal. To appear. Available at arXiv:0706.2598v1.
  • [10] Hansen, F.K., Banday, A.J., Eriksen, H.K., Gorski, K.M. and Lilje, P.B. (2006). Foreground subtraction of cosmic microwave background maps using WI-FIT (wavelet based high resolution fitting of internal templates)., Astrophysical J. 648 784–796.
  • [11] Hansen, F.K., Cabella, P., Marinucci, D. and Vittorio, N. (2004). Asymmetries in the local curvature of WMAP data., Astrophys. J. 607 L67–L70.
  • [12] Hernandez, E. and Weiss, G. (1996)., A First Course on Wavelets Florida: CRC Press.
  • [13] Jin, J., Starck, J.-L., Donoho, D.L., Aghanim, N. and Forni, O. (2005). Cosmological non-Gaussian signature detection: Comparing performance of different statistical tests., EURASIP J. Appl. Signal Process. 15 2470–2485.
  • [14] Mardia, K.V. and Jupp, P.E. (2000)., Directional Statistics. Chichester: Wiley.
  • [15] Marinucci, D. (2006). High resolution asymptotics for the angular bispectrum of spherical random fields., Ann. Statist. 34 1–41.
  • [16] McEwen, J.D., Vielva, P., Hobson, M.P., Martinez-Gonzalez, E. and Lasenby, A.N. (2007). Detection of the integrated Sachs–Wolfe effect and corresponding dark energy constraints made with directional spherical wavelets., Monthly Notices Roy. Astronom. Soc. 376 1211–1226.
  • [17] McEwen, J.D., Hobson, M.P., Lasenby, A.N. and Mortlock, D.J. (2006). A high-significance detection of non-Gaussianity in the WMAP 3-year data using directional spherical wavelets., Monthly Notices Roy. Astronom. Soc. 371 L50–L54.
  • [18] Moudden, Y., Cardoso, J.-F., Starck, J.-L. and Delabrouille, J. (2005). Blind component separation in wavelet space. Application to CMB analysis., EURASIP J. Appl. Signal Process. 15 2437–2454.
  • [19] Narcowich, F.J., Petrushev, P. and Ward, J.D. (2006). Localized tight frames on the sphere., SIAM J. Math. Anal. Appl. 38 574–594.
  • [20] Narcowich, F.J., Petrushev, P. and Ward, J.D. (2006). Decomposition of Besov and Triebel–Lizorkin spaces on the sphere., J. Funct. Anal. 238 530–564.
  • [21] Nualart, D. and Peccati, G. (2005). Central limit theorems for sequences of multiple stochastic integrals., Ann. Probab. 33 177–193.
  • [22] Pietrobon, D., Balbi, A. and Marinucci, D. (2006) Integrated Sachs–Wolfe effect from the cross correlation of WMAP 3 year and the NRAO VLA sky survey data: New results and constraints on dark energy., Phys. Rev. D 74 043524.
  • [23] Politis, D.N., Romano, J.P. and Wolf, M. (1999)., Subsampling. New York: Springer.
  • [24] Pycke, J.-R. (2007). A decomposition for invariant tests of uniformity on the sphere., Proc. Amer. Math. Soc. 135 2983–2993. (electronic).
  • [25] Sanz, J.L., Herranz, D., Lopez-Caniego, M. and Argueso, F. (2006). Wavelets on the sphere. Application to the detection problem. In, Proceedings of the 14th European Signal Processing Conference (EUSIPCO 2006) (F. Gini and E.E. Kuruoglu, eds.).
  • [26] Starck, J.-L., Moudden, Y., Abrial, P. and Nguyen, M. (2006). Wavelets, ridgelets and curvelets on the sphere., Astronom Astrophys 446 1191–1204.
  • [27] Surgailis, D. (2003). CLTs for polynomials of linear sequences: diagram formula with illustrations. In, Theory and Applications of Long-range Dependence 111–127. Boston: Birkhäuser.
  • [28] Varshalovich, D.A., Moskalev, A.N. and Khersonskii, V.K. (1988)., Quantum Theory of Angular Momentum. New Jersey: World Scientific.
  • [29] Vielva, P., Martinez-Gonzalez, E., Barreiro, B., Sanz, J. and Cayon, L. (2004). Detection of non-Gaussianity in the WMAP first year data using spherical wavelets., Astrophysical J. 609 22–34.
  • [30] Vielva, P., Wiaux, I., Martinez-Gonzalez, E. and Vandergheynst, P. (2007). Alignment and signed-intensity anomalies in WMAP data., Mon. Not. R. Astron. Soc. 381 932–942.
  • [31] Wiaux, I., Jacques, L. and Vandergheynst, P. (2005). Correspondence principle between spherical and Euclidean wavelets., Astrophys. J. 632 15–28.
  • [32] Wiaux, I., McEwen, J.D., Vandergheynst, P. and Blanc, O. (2008). Exact reconstruction with directional wavelets on the sphere., Mon. Not. R. Astron. Soc. 388 770–788.