Bernoulli

  • Bernoulli
  • Volume 14, Number 1 (2008), 277-299.

Small value probabilities via the branching tree heuristic

Peter Mörters and Marcel Ortgiese

Full-text: Open access

Abstract

In the first part of this paper, we give easy and intuitive proofs for the small value probabilities of the martingale limit of a supercritical Galton–Watson process in both the Schröder and the Böttcher cases. These results are well known, but the most cited proofs rely on generating function arguments which are hard to transfer to other settings. In the second part, we show that the strategy underlying our proofs can be used in the quite different context of self-intersections of stochastic processes. Solving a problem posed by Wenbo Li, we find the small value probabilities for intersection local times of several Brownian motions, as well as for self-intersection local times of a single Brownian motion.

Article information

Source
Bernoulli, Volume 14, Number 1 (2008), 277-299.

Dates
First available in Project Euclid: 8 February 2008

Permanent link to this document
https://projecteuclid.org/euclid.bj/1202492794

Digital Object Identifier
doi:10.3150/07-BEJ107

Mathematical Reviews number (MathSciNet)
MR2401663

Zentralblatt MATH identifier
1163.60040

Keywords
branching process Brownian motion embedded random walk embedded tree intersection local time intersection of Brownian motions local time lower tail martingale limit random tree self-intersection local time small ball problem small deviation supercritical Galton–Watson process

Citation

Mörters, Peter; Ortgiese, Marcel. Small value probabilities via the branching tree heuristic. Bernoulli 14 (2008), no. 1, 277--299. doi:10.3150/07-BEJ107. https://projecteuclid.org/euclid.bj/1202492794


Export citation

References

  • Athreya, K.B. and Ney, P.E. (1972)., Branching Processes. New York: Springer.
  • Bingham, N.H. (1988). On the limit of a supercritical branching process., J. Appl. Probab. 25A 215–228.
  • Dereich, S., Fehringer, F., Matoussi, A. and Scheutzow, M. (2003). On the link between small ball probabilities and the quantization problem for Gaussian measures on Banach spaces., J. Theoret. Probab. 16 249–265.
  • Dubuc, S. (1971a). La densité de la loi-limite d’un processus en cascade expansif., Z. Wahrsch. Verw. Gebiete 19 281–290.
  • Dubuc, S. (1971b). Problèmes relatifs à l’itération de fonctions suggérés par les processus en cascade., Ann. Inst. Fourier (Grenoble) 21 171–251.
  • Graf, S., Luschgy, H. and Pagès, G. (2003). Functional quantization and small ball probabilities for Gaussian processes., J. Theoret. Probab. 16 1047–1062.
  • Hofstad, R. v. d., den Hollander, F. and König, W. (1997). Central limit theorem for the Edwards model., Ann. Probab. 25 573–597.
  • Klartag, B. and Vershynin, R. (2007). Small ball probability and Dvoretzky theorem., Israel J. Math. 157 193–207.
  • Klenke, A. and Mörters, P. (2005). The multifractal spectrum of Brownian intersection local times., Ann. Probab. 33 1255–1301.
  • Lawler, G. (1996). Hausdorff dimension of cut points for Brownian motion., Electron. J. Probab. 1 1–20.
  • Li, W. and Linde, W. (1999). Approximation, metric entropy and small ball estimates for Gaussian measures., Ann. Probab. 27 1556–1578.
  • Li, W. and Shao, Q. (2001a). Capture time of Brownian pursuits., Probab. Theory Related Fields 121 30–48.
  • Li, W. and Shao, Q. (2001b). Gaussian processes: Inequalities, small ball probabilities and applications. In, Stochastic Processes: Theory and Methods. Handbook of Statistics 19 (C. Rao and D. Shanbhag, eds.) 533–597. Amsterdam: North-Holland.
  • Lifshits, M. (2006). Bibliography of small deviation probabilities. Updated version downloadable from, http://www.proba.jussieu.fr/pageperso/smalldev/biblio.pdf.
  • Mörters, P. and Shieh, N.-R. (2007). The exact packing measure of Brownian double points., Probab. Theory Related Fields. To appear.