Bernoulli

  • Bernoulli
  • Volume 3, Number 3 (1997), 351-370.

Asymptotic normality of least-squares estimators of tail indices

Sándor Csörgö and László Viharos

Full-text: Open access

Abstract

Based on least-squares considerations, Schultze and Steinebach proposed three new estimators for the tail index of a regularly varying distribution function and proved their consistency. We show that, unlike the Hill estimator, all three least-squares estimators can be centred to have normal asymptotic distributions universally over the whole model, and for two of these estimators this in fact happens at the desirable order of the norming sequence. We analyse the conditions under which asymptotic confidence intervals become possible. In a submodel, we compare the asymptotic mean squared errors of optimal versions of these and earlier estimators. The choice of the number of extreme order statistics to be used is also discussed through the investigation of the asymptotic mean squared error for a comprehensive set of examples of a general kind.

Article information

Source
Bernoulli, Volume 3, Number 3 (1997), 351-370.

Dates
First available in Project Euclid: 23 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.bj/1177334460

Mathematical Reviews number (MathSciNet)
MR1468310

Zentralblatt MATH identifier
1066.62526

Keywords
asymptotic confidence intervals asymptotic mean squared errors least-squares estimators tail index universal asymptotic normality

Citation

Csörgö, Sándor; Viharos, László. Asymptotic normality of least-squares estimators of tail indices. Bernoulli 3 (1997), no. 3, 351--370. https://projecteuclid.org/euclid.bj/1177334460


Export citation

References

  • [1] Beirlant, J. and Teugels, J.L. (1989) Asymptotic normality of Hill's estimator. Extreme Value Theory, Oberwolfach, 1987, pp. 148-155. Lecture Notes Statist. 51. New York: Springer-Verlag.
  • [2] Bingham, N.H., Goldie, C.M. and Teugels, J.L. (1987) Regular Variation. Cambridge: Cambridge University Press.
  • [3] Csörgö, M., Csörgö, S., Horváth, L. and Mason, D.M. (1986) Weighted empirical and quantile processes. Ann. Probab., 14, 31-85.
  • [4] Csörgö, S. (1984) Adaptive estimation of the parameters of stable laws. In P. Révész (ed.) Limit Theorems in Probability and Statistics, 1982, pp. 305-367. Colloq. Math. Soc. János Bolyai 36. Amsterdam: North-Holland.
  • [5] Csörgö, S., Deheuvels, P. and Mason, D.M. (1985) Kernel estimates of the tail index of a distribution. Ann. Statist., 13, 1050-1077.
  • [6] Csörgö, S., Haeusler, E. and Mason, D.M. (1991) The asymptotic distribution of extreme sums. Ann. Probab., 19, 783-811.
  • [7] Csörgö, S. and Mason, D.M. (1985) Central limit theorems for sums of extreme values. Math. Proc. Cambridge Philos. Soc., 98, 547-558.
  • [8] Csörgö, S. and Viharos, L. (1995) On the asymptotic normality of Hill's estimator. Math. Proc. Cambridge Philos. Soc., 118, 375-382.
  • [9] Deheuvels, P., Haeusler, E. and Mason, D.M. (1988) Almost sure convergence of the Hill estimator. Math. Proc. Cambridge Philos. Soc., 104, 371-381.
  • [10] de Haan, L. (1970) On Regular Variation and its Application to the Weak Convergence of Sample Extremes. Math. Centre Tract 32. Amsterdam: Mathematisch Centrum.
  • [11] Haeusler, E. and Teugels, J.L. (1985) On the asymptotic normality of Hill's estimator for the exponent of regular variation. Ann. Statist., 13, 743-756.
  • [12] Hall, P. (1982) On some simple estimates of an exponent of regular variation. J. Roy. Statist. Soc., Ser. B, 44, 37-42.
  • [13] Hall, P. and Welsh, A.H. (1985) Adaptive estimates of parameters of regular variation. Ann. Statist., 13, 331-341.
  • [14] Hill, B.M. (1975) A simple general approach to inference about the tail of a distribution. Ann. Statist., 3, 1163-1174.
  • [15] Lo, G.S. (1989) A note on the asymptotic normality of sums of extreme values. J. Stat. Plan. Inference, 22, 127-136.
  • [16] Mason, D.M. (1982) Laws of large numbers for sums of extreme values. Ann. Probab., 10, 754-764.
  • [17] Mason, D.M. and van Zwet, W.R. (1987) A refinement of the KMT inequality for the uniform empirical process. Ann. Probab., 15, 871-884.
  • [18] Novak, S. Yu. and Utev, S.A. (1990) Asymptotics of the distribution of the ratio of sums of random variables. Siberian Math. J., 31, 781-788.
  • [19] Schultze, J. and Steinebach, J. (1996) On least squares estimates of an exponential tail coefficient. Statist. Decisions, 14, 353-372.
  • [20] Viharos, L. (1993) Asymptotic distributions of linear combinations of extreme values. Acta Sci. Math. (Szeged), 58, 211-231.
  • [21] Viharos, L. (1995) Limit theorems for linear combinations of extreme values with applications to inference about the tail of a distribution. Acta Sci. Math. (Szeged), 60, 761-777.
  • [22] Viharos, L. (1997) Estimators of the exponent of regular variation with universally normal asymptotic distributions. Math. Methods Statist. To appear.