Bernoulli

  • Bernoulli
  • Volume 5, Number 4 (1999), 571-587.

An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions

Ilkka Norros, Esko Valkeila, and Jorma Virtamo

Full-text: Open access

Abstract

The Radon-Nikodym derivative between a centred fractional Brownian motion Z and the same process with constant drift is derived by finding an integral transformation which changes Z to a process with independent increments. A representation of Z through a standard Brownian motion on a finite interval is given. The maximum-likelihood estimator of the drift and some other applications are presented.

Article information

Source
Bernoulli Volume 5, Number 4 (1999), 571-587.

Dates
First available in Project Euclid: 19 February 2007

Permanent link to this document
https://projecteuclid.org/euclid.bj/1171899318

Mathematical Reviews number (MathSciNet)
MR1704556

Zentralblatt MATH identifier
0955.60034

Keywords
fractional Brownian motion Gaussian processes maximum-likelihood estimator prediction stochastic integration

Citation

Norros, Ilkka; Valkeila, Esko; Virtamo, Jorma. An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli 5 (1999), no. 4, 571--587.https://projecteuclid.org/euclid.bj/1171899318


Export citation

References

  • [1] Decreusefond, L. and Üstünel, A. (1999) Stochastic analysis of the fractional Brownian motion. Potential Anal, 10, 177-214.
  • [2] Feyel, D. and de La Pradelle, A. (1996) Fractional integrals and Brownian processes. Preprint, Université D'Évry.
  • [3] Gripenberg, G. and Norros, I. (1996) On the prediction of fractional Brownian motion. J. Appl. Probab., 33, 400-410.
  • [4] Huang, S. and Cambanis, S. (1978) Stochastic and multiple Wiener integrals for Gaussian processes. Ann. Probab., 6, 585-614.
  • [5] Jacod, J. and Shiryaev, A. (1987) Limit Theorems for Stochastic Processes. Berlin: Springer-Verlag.
  • [6] Kolmogorov, A. (1940) Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. C.R. Dokl. Acad. Sci. USSR N.S., 26, 115-118.
  • [7] Liptser, R. and Shiryaev, A. (1986) Theory of Martingales. Moscow: Nauka. (In Russian.)
  • [8] Mandelbrot, B. and Van Ness, J. (1968) Fractional Brownian motions, fractional noises and applications. SIAM Rev., 10, 422-437.
  • [9] Molchan, G. (1969) Gaussian processes with spectra which are asymptotically equivalent to a power of ë. Theory Probab. Applic., 14, 530-532.
  • [10] Molchan, G. and Golosov, J. (1969) Gaussian stationary processes with asymptotic power spectrum. Soviet Math. Dokl., 10, 134-137.
  • [11] Revuz, D. and Yor, M. (1991) Continuous Martingales and Brownian Motion. Grundlehren der mathematischen Wissenschaften, 293, Berlin: Springer-Verlag.
  • [12] Samarov, A. and Taqqu, M. (1988) On the efficiency of the sample mean in long memory noise. J. Time Ser. Anal., 9, 191-200.