• Bernoulli
  • Volume 5, Number 5 (1999), 873-906.

Nonlinear wavelet estimation of time-varying autoregressive processes

Rainer Dahlhaus, Michael H. Neumann, and Rainer Von Sachs

Full-text: Open access


We consider nonparametric estimation of the parameter functions ai(.), i = 1,...,p, of a time-varying autoregressive process. Choosing an orthonormal wavelet basis representation of the functions ai, the empirical wavelet coefficients are derived from the time series data as the solution of a least-squares minimization problem. In order to allow the ai to functions of inhomogeneous regularity, we apply nonlinear thresholding to the empirical coefficients and obtain locally smoothed estimates of the ai. We show that the resulting estimators attain the usual minimax L2 rates up to a logarithmic factor, simultaneously in a large scale of Besov classes. The finite-sample behaviour of our procedure is demonstrated by application to two typical simulated examples.

Article information

Bernoulli, Volume 5, Number 5 (1999), 873-906.

First available in Project Euclid: 12 February 2007

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

nonlinear thresholding non-stationary processes time series time-varying autoregression wavelet estimators


Dahlhaus, Rainer; Neumann, Michael H.; Von Sachs, Rainer. Nonlinear wavelet estimation of time-varying autoregressive processes. Bernoulli 5 (1999), no. 5, 873--906.

Export citation


  • [1] Bentkus, R. and Rudzkis, R. (1980) On exponential estimates of the distribution of random variables. Liet. Mat. Rink., 20, 15-30.
  • [2] Bergh, J. and Löfström, J. (1976) Interpolation Spaces: An Introduction. Berlin: Springer-Verlag.
  • [3] Brillinger, D. (1994) Some asymptotics of wavelet fits in the stationary error case. Technical Report 415, Department of Statistics, University of California at Berkeley.
  • [4] Cohen, A., Dahmen, W. and DeVore, R. (1995) Multiscale decompositions on bounded domains.IGPM Preprint 114, TH Aachen.
  • [5] Cohen, A., Daubechies, I. and Vial, P. (1993) Wavelets on the interval and fast wavelet transform. Appl. Comput. Harmon. Anal., 1, 54-81.
  • [6] Dahlhaus, R. (1996) On the Kullback-Leibler information divergence of locally-stationary processes. Stochastic Process. Appl., 62, 139-168.
  • [7] Dahlhaus, R. (1997) Fitting time series models to nonstationary processes. Ann. Statist., 25, 1-37.
  • [8] Daubechies, I. (1988) Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math., 41, 909-996.
  • [9] Donoho, D. (1993) Unconditional bases are optimal bases for data compression and statistical estimation. Appl. Comput. Harmon. Anal., 1, 100-115.
  • [10] Donoho, D. and Johnstone, I. (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81, 425-455.
  • [11] Donoho, D. and Johnstone, I. (1995) Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc., 90, 1200-1224.
  • [12] Donoho, D. and Johnstone, I. (1998) Minimax estimation via wavelet shrinkage. Ann. Statist., 26, 879-921.
  • [13] Donoho, D., Johnstone, I., Kerkyacharian, G. and Picard, D. (1995) Wavelet shrinkage: asymptopia? (with discussion). J. Roy. Statist. Soc. Ser. B, 57, 301-337.
  • [14] Graybill, F. A. (1983) Matrices with Applications in Statistics, 2nd edn. Wadsworth, Belmont, CA.
  • [15] Hall, P. and Patil, P. (1995) Formulae for mean integrated squared error of nonlinear wavelet-based density estimators. Ann. Statist., 23, 905-928.
  • [16] Johnson, N. and Kotz, S. (1970) Distributions in Statistics. Continuous Univariate Distributions. New York: Wiley.
  • [17] Johnstone, I. and Silverman, B. (1997) Wavelet threshold estimators for data with correlated noise. J. Roy. Statist. Soc., Ser. B, 59, 319-351.
  • [18] Künsch, H. (1995) A note on causal solutions for locally stationary AR-processes. Manuscript, ETH Zürich.
  • [19] Meyer, Y. (1990) Ondelettes et Opérateurs I. Paris: Herman.
  • [20] Neumann, M. (1996) Spectral density estimation via nonlinear wavelet methods for stationary non- Gaussian time series. J. Time Ser. Anal., 17, 601-633.
  • [21] Neumann, M. and Spokoiny, V. (1995) On the efficiency of wavelet estimators under arbitrary error distributions. Math. Methods Statist., 4, 137-166.
  • [22] Neumann, M. and von Sachs, R. (1995) Wavelet thresholding: beyond the Gaussian i.i.d. situation. In A. Antoniadis and G. Oppenheim (eds), Wavelets and Statistics, Lecture Notes in Statistics 103, pp. 301- 329. New York: Springer-Verlag.
  • [23] Neumann, M. and von Sachs, R. (1997) Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra. Ann. Statist., 25, 38-76.
  • [24] Rudzkis, R. (1978) Large deviations for estimates of spectrum of stationary series. Lithuanian Math. J., 18, 214-226.
  • [25] Rudzkis, R., Saulis, L. and Statulevicius, V. (1978) A general lemma on probabilities of large deviations. Lithuanian Math. J., 18, 226-238.
  • [26] Triebel, H. (1990) Theory of Function Spaces II. Basel: Birkhäuser.