Bernoulli

  • Bernoulli
  • Volume 12, Number 6 (2006), 1019-1043.

Efficient estimation of stochastic volatility using noisy observations: a multi-scale approach

Lan Zhang

Full-text: Open access

Abstract

With the availability of high-frequency financial data, nonparametric estimation of the volatility of an asset return process becomes feasible. A major problem is how to estimate the volatility consistently and efficiently, when the observed asset returns contain error or noise, for example, in the form of microstructure noise. The issue of consistency has been addressed in the recent literature. However, the resulting estimator is not efficient. In work by Zhang, Myland and Aït-Sahalia, the best estimator converges to the true volatility only at the rate of n-1/6. In this paper, we propose an estimator, the multi-scale realized volatility (MSRV), which converges to the true volatility at the rate of n-1/4, which is the best attainable. We show a central limit theorem for the MSRV estimator, which permits intervals to be set for the true integrated volatility on the basis of the MSRV.

Article information

Source
Bernoulli, Volume 12, Number 6 (2006), 1019-1043.

Dates
First available in Project Euclid: 4 December 2006

Permanent link to this document
https://projecteuclid.org/euclid.bj/1165269149

Digital Object Identifier
doi:10.3150/bj/1165269149

Mathematical Reviews number (MathSciNet)
MR2274854

Zentralblatt MATH identifier
1117.62119

Keywords
consistency dependent noise discrete observation efficiency It{ô} process microstructure noise observation error rate of convergence realized volatility

Citation

Zhang, Lan. Efficient estimation of stochastic volatility using noisy observations: a multi-scale approach. Bernoulli 12 (2006), no. 6, 1019--1043. doi:10.3150/bj/1165269149. https://projecteuclid.org/euclid.bj/1165269149


Export citation

References

  • [1] Aït-Sahalia, Y., Mykland, P.A. and Zhang, L. (2005a) How often to sample a continuous-time process in the presence of market microstructure noise. Rev. Financial Stud., 18, 351-416.
  • [2] Aït-Sahalia, Y., Mykland, P.A. and Zhang, L. (2005b) Ultra high frequency volatility estimation with dependent microstructure noise. Technical report, Princeton University.
  • [3] Aldous, D.J. and Eagleson, G.K. (1978) On mixing and stability of limit theorems. Ann. Probab., 6, 325-331.
  • [4] Bandi, F.M., Russell, J.R. and Zhu, Y. (2006) Using high-frequency data in dynamic portfolio choice. Econometric Rev. To appear.
  • [5] Barndorff-Nielsen, O.E., Hansen, P.R., Lunde, A. and Shephard, N. (2006) Regular and modified kernel-based estimators of integrated variance: the case with independent noise. Technical report, Department of Mathematical Sciences, University of Aarhus.
  • [6] Bibby, B.M., Jacobsen, M. and Sørensen, M. (2002) Estimating functions for discretely sampled diffusion-type models. In Y. Aït-Sahalia and L.P. Hansen (eds), Handbook of Financial Econometrics. Amsterdam: North-Holland.
  • [7] Brown, S.J. (1990) Estimating volatility. In S. Figlewski, W. Silber, and M. Subrahmanyam (eds), Financial Options: From Theory to Practice, pp. 516-537. Homewood, IL: Business One-Irwin.
  • [8] Corsi, F., Zumbach, G., Müller, U., and Dacorogna, M. (2001) Consistent high-precision volatility from high-frequency data. Economic Notes, 30, 183-204.
  • [9] Curci, G. and Corsi, F. (2005) Discrete sine transform for multi-scales realized volatility measures. Technical report, University of Lugano.
  • [10] Gloter, A. and Jacod, J. (2000a) Diffusions with measurement errors: I - Local asymptotic normality. Preprint PMA-623, Laboratoire de Probabilités et Modèles Aléatoires, Université de Paris VI.
  • [11] Gloter, A. and Jacod, J. (2000b) Diffusions with measurement errors: II - Optimal estimators. Preprint PMA-624, Laboratoire de Probabilités et Modèles Aléatoires, Université de Paris VI.
  • [12] Hall, P. and Heyde, C.C. (1980) Martingale Limit Theory and Its Application. New York: Academic Press.
  • [13] Hansen, P.R. and Lunde, A. (2006) Realized variance and market microstructure noise. J. Business Economic Statist.
  • [14] Jacod, J. and Protter, P. (1998) Asymptotic error distributions for the Euler method for stochastic differential equations. Ann. Probab., 26, 267-307.
  • [15] Jacod, J. and Shiryaev, A.N. (2003) Limit Theorems for Stochastic Processes, 2nd edn. New York: Springer-Verlag.
  • [16] Karatzas, I. and Shreve, S.E. (1991) Brownian Motion and Stochastic Calculus. New York: Springer- Verlag.
  • [17] Mykland, P.A. and Zhang, L. (2006) ANOVA for diffusions and Ito processes. Ann. Statist., forthcoming, 34(4).
  • [18] Rényi, A. (1963) On stable sequences of events. Sankya Ser. A, 25, 293-302.
  • [19] Rootzén, H. (1980) Limit distributions for the error in approximations of stochastic integrals. Ann. Probab., 8, 241-251.
  • [20] Stein, M. (1987) Minimum norm quadratic estimation of spatial variograms. J. Amer. Statist. Assoc., 82, 765-772.
  • [21] Stein, M.L. (1990) A comparison of generalized cross validation and modified maximum likelihood for estimating the parameters of a stochastic process. Ann. Statist., 18, 1139-1157.
  • [22] Stein, M.L. (1993) Spline smoothing with an estimated order parameter. Ann. Statist., 21, 1522-1544.
  • [23] Ying, Z. (1991) Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process. J. Multivariate Anal., 36, 280-296.
  • [24] Ying, Z. (1993) Maximum likelihood estimation of parameters under a spatial sampling scheme. Ann. Statist., 21, 1567-1590.
  • [25] Zhang, L. (2001) From martingales to ANOVA: implied and realized volatility. Ph.D. thesis, Department of Statistics, University of Chicago.
  • [26] Zhang, L., Mykland, P.A. and Aït-Sahalia, Y. (2005) A tale of two time scales: determining integrated volatility with noisy high-frequency data. J. Amer. Statist. Assoc. 100, 1394-1411.
  • [27] Zhou, B. (1996) High-frequency data and volatility in foreign-exchange rates. J. Business Econom. Statist., 14, 45-52.