Bernoulli

  • Bernoulli
  • Volume 12, Number 6 (2006), 943-954.

On Stein's factors for Poisson approximation in Wasserstein distance

A.D. Barbour and Aihua Xia

Full-text: Open access

Abstract

We provide a probabilistic proof of various Stein's factors for Poisson approximation in terms of the Wasserstein distance.

Article information

Source
Bernoulli Volume 12, Number 6 (2006), 943-954.

Dates
First available in Project Euclid: 4 December 2006

Permanent link to this document
https://projecteuclid.org/euclid.bj/1165269145

Digital Object Identifier
doi:10.3150/bj/1165269145

Mathematical Reviews number (MathSciNet)
MR2274850

Zentralblatt MATH identifier
1328.62076

Keywords
Poisson approximation Stein's factors Stein's method Wasserstein distance

Citation

Barbour, A.D.; Xia, Aihua. On Stein's factors for Poisson approximation in Wasserstein distance. Bernoulli 12 (2006), no. 6, 943--954. doi:10.3150/bj/1165269145. https://projecteuclid.org/euclid.bj/1165269145.


Export citation

References

  • [1] Barbour, A.D. (1988) Stein´s method and Poisson process convergence. J. Appl. Probab., 25A, 175-184.
  • [2] Barbour, A.D. and Eagleson, G.K. (1987) An improved Poisson limit theorem for sums of dissociated random variables. J. Appl. Probab., 24, 586-599.
  • [3] Barbour, A.D. and Hall, P. (1984) On the rate of Poisson convergence. Math. Proc. Cambridge Philos. Soc., 95, 473-480.
  • [4] Barbour, A.D., Holst, L. and Janson, S. (1992) Poisson Approximation. Oxford: Oxford University Press.
  • [5] Brown, T.C. and Xia, A. (2001) Stein´s method and birth-death processes. Ann. Probab., 29, 1373-1403.
  • [6] Cekanavicius, V. and Vaitkus, P. (2001) Centered Poisson approximation by the Stein method. Lithuanian Math. J., 41, 319-329.
  • [7] Chen, L.H.Y. (1975) Poisson approximation for dependent trials. Ann. Probab., 3, 534-545.
  • [8] Röllin, A. (2005) Approximation of sums of conditionally independent variables by the translated Poisson distribution. Bernoulli, 11, 1115-1128.
  • [9] Stein, C. (1972) A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 2, pp. 583-602. Berkeley: University of California Press.