Bernoulli

  • Bernoulli
  • Volume 12, Number 4 (2006), 633-661.

Penalized projection estimators of the Aalen multiplicative intensity

Patricia Reynaud-Bouret

Full-text: Open access

Abstract

We study the problem of nonparametric, completely data-driven estimation of the intensity of counting processes satisfying the Aalen multiplicative intensity model. To do so, we use model selection techniques and, specifically, penalized projection estimators for a random inner product. For histogram estimators, under some assumptions on the process, we obtain adaptive results for the minimax risk. In general, for more intricate (predictable) models, we only obtain oracle inequalities. The study is complemented by some simulations in the right-censoring model.

Article information

Source
Bernoulli, Volume 12, Number 4 (2006), 633-661.

Dates
First available in Project Euclid: 16 August 2006

Permanent link to this document
https://projecteuclid.org/euclid.bj/1155735930

Digital Object Identifier
doi:10.3150/bj/1155735930

Mathematical Reviews number (MathSciNet)
MR2248231

Zentralblatt MATH identifier
1125.62027

Keywords
adaptive estimation counting processes model selection multiplicative intensity model penalized projection estimators

Citation

Reynaud-Bouret, Patricia. Penalized projection estimators of the Aalen multiplicative intensity. Bernoulli 12 (2006), no. 4, 633--661. doi:10.3150/bj/1155735930. https://projecteuclid.org/euclid.bj/1155735930


Export citation

References

  • [1] Andersen, P., Borgan, fl., Gill, R. and Keiding, N. (1993) Statistical Models Based on Counting Processes. New York: Springer-Verlag.
  • [2] Antoniadis, A. (1989) A penalty method for nonparametric estimation of the intensity function of a counting process. Ann. Inst. Statist. Math., 41, 781-807.
  • [3] Antoniadis, A., Grégoire, G. and Nason, G. (1999) Density and hazard rate estimation for rightcensored data by using wavelet methods. J. R. Statist. Soc. Ser. B, 61, 63-84.
  • [4] Barron, A., Birgé, L. and Massart, P. (1999) Risk bounds for model selection via penalization. Probab. Theory Related Fields, 113, 301-413.
  • [5] Birgé, L. (2001) A new look at an old result: Fano´s lemma. Preprint PMA-632, Laboratoire de Probabilités et Modèles Aléatoires, Universités Paris VI/VII.
  • [6] Birgé, L. and Massart, P. (1997) From model selection to adaptive estimation. In D. Pollard, E. Torgersen and G.L. Yang (eds), Festschrift for Lucien Le Cam, pp. 55-87. New York: Springer-Verlag.
  • [7] Birgé, L. and Massart, P. (2001) Gaussian model selection. J. Eur. Math. Soc., 3, 203-268.
  • [8] Cavalier, L. and Koo, J.-Y. (2002) Poisson intensity estimation for tomographic data using a wavelet shrinkage approach. IEEE Trans. Inform. Theory, 48, 2794-2802.
  • [9] Döhler, S. and Rüschendorf, L. (2002) Adaptive estimation of hazard functions. Probab. Math. Statist., 22, 355-379.
  • [10] Grégoire, G. (1993) Least squares cross-validation for counting process intensities. Scand. J. Statist., 20, 343-360.
  • [11] Lebarbier, E. (2002) Quelques approches pour la détection de ruptures à horizon fini. Doctoral thesis, Université Paris XI, UFR Orsay.
  • [12] Mallows, C. (1973) Some comments on Cp. Technometrics, 15, 661-675.
  • [13] Massart, P. (1990) The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab., 18, 1269-1283.
  • [14] Massart, P. (2000) About the constants in Talagrand´s concentration inequalities for empirical processes. Ann. Probab., 28, 863-884.
  • [15] Massart, P. (2005) Concentration Inequalities and Model Selection: École d´Été de Probabilités de Saint-Flour XXXIII-2003 (ed. J. Picard), Lecture Notes in Math. To appear. http://www.math.u-psud.fr/~massart/ (accessed 9 February 2006).
  • [16] Ramlau-Hansen, H. (1983) Smoothing counting process intensity by means of kernel functions. Ann. Statist., 11, 453-466.
  • [17] Reynaud-Bouret, P. (2003) Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities. Probab. Theory Related Fields, 126, 103-153.
  • [18] Reynaud-Bouret, P. (2006) Compensator and exponential inequalities for some suprema of counting processes: Statist. Probab. Lett., 76, 1514-1521.
  • [19] Rio, E. (2002) Une inégalité de Bennett pour les maxima de processus empiriques. Ann. Inst. H. Poincaré Probab. Statist., 38, 1053-1057.
  • [20] van de Geer, S. (1995) Exponential inequalities for martingales, with application to maximum likelihood estimation for counting processes. Ann. Statist., 23, 1779-1801.