Bernoulli

  • Bernoulli
  • Volume 9, Number 6 (2003), 1071-1092.

Parameter estimation for the supercritical contact process

Marta Fiocco and Willem R. Van Zwet

Full-text: Open access

Abstract

Contact processes -- and, more generally, interacting particle processes -- can serve as models for a large variety of statistical problems, especially if we allow some simple modifications that do not essentially complicate the mathematical treatment of these processes. We begin a statistical study of the supercritical contact process that starts with a single infected site at the origin and is conditioned on survival of the infection. We consider the statistical problem of estimating the parameter $\lambda$ of the process on the basis of an observation of the process at a single time $t$. We propose an estimator of $\lambda$ and show that it is consistent and asymptotically normal as $t \rightarrow \infty$.

Article information

Source
Bernoulli, Volume 9, Number 6 (2003), 1071-1092.

Dates
First available in Project Euclid: 23 December 2003

Permanent link to this document
https://projecteuclid.org/euclid.bj/1072215201

Digital Object Identifier
doi:10.3150/bj/1072215201

Mathematical Reviews number (MathSciNet)
MR2046818

Zentralblatt MATH identifier
1052.62087

Keywords
contact process parameter estimation random mask shrinking supercritical

Citation

Fiocco, Marta; Van Zwet, Willem R. Parameter estimation for the supercritical contact process. Bernoulli 9 (2003), no. 6, 1071--1092. doi:10.3150/bj/1072215201. https://projecteuclid.org/euclid.bj/1072215201


Export citation