## Bulletin of the Belgian Mathematical Society - Simon Stevin

- Bull. Belg. Math. Soc. Simon Stevin
- Volume 20, Number 5 (2013), 937-959.

### Limit and end functors of dynamical systems via exterior spaces

J. M. García Calcines, L. J. Hernández Paricio, and M. T. Rivas Rodríguez

#### Abstract

In this paper we analyze some applications of the category of exterior spaces to the study of dynamical systems (flows). We study the notion of an absorbing open subset of a dynamical system; i.e., an open subset that contains the ``future part'' of all the trajectories. The family of all absorbing open subsets is a quasi-filter which gives the structure of an exterior space to the flow. The limit space and end space of an exterior space are used to construct the limit spaces and end spaces of a dynamical system. On the one hand, for a dynamical system two limits spaces $L^{\r}(X)$ and $\bar L^{\r}(X)$ are constructed and their relations with the subflows of periodic, Poisson stable points and $\Omega $-limits of $X$ are analyzed. On the other hand, different end spaces are also associated to a dynamical system having the property that any positive semi-trajectory has an end point in these end spaces. This type of construction permits us to consider the subflow containing all trajectories finishing at an end point $a$. When $a$ runs over the set of all end points, we have an induced decomposition of a dynamical system as a disjoint union of stable (at infinity) subflows.

#### Article information

**Source**

Bull. Belg. Math. Soc. Simon Stevin, Volume 20, Number 5 (2013), 937-959.

**Dates**

First available in Project Euclid: 25 November 2013

**Permanent link to this document**

https://projecteuclid.org/euclid.bbms/1385390773

**Digital Object Identifier**

doi:10.36045/bbms/1385390773

**Mathematical Reviews number (MathSciNet)**

MR3160598

**Zentralblatt MATH identifier**

1287.54034

**Subjects**

Primary: 18B99: None of the above, but in this section 18A40: Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.) 37B99: None of the above, but in this section 54H20: Topological dynamics [See also 28Dxx, 37Bxx]

**Keywords**

Dynamical system exterior space exterior flow limit space functor end space functor positively Poisson stable point

#### Citation

García Calcines, J. M.; Hernández Paricio, L. J.; Rivas Rodríguez, M. T. Limit and end functors of dynamical systems via exterior spaces. Bull. Belg. Math. Soc. Simon Stevin 20 (2013), no. 5, 937--959. doi:10.36045/bbms/1385390773. https://projecteuclid.org/euclid.bbms/1385390773