Bulletin of the Belgian Mathematical Society - Simon Stevin

An eigenvalue problem involving a degenerate and singular elliptic operator

Mihai Mihăilescu and Dušan Repovš

Full-text: Open access

Abstract

We study an eigenvalue problem involving a degenerate and singular elliptic operator on the whole space $\mathbb R^N$. We prove the existence of an unbounded and increasing sequence of eigenvalues. Our study generalizes to the case of degenerate and singular operators a result of A. Szulkin and M. Willem.

Article information

Source
Bull. Belg. Math. Soc. Simon Stevin, Volume 18, Number 5 (2011), 839-847.

Dates
First available in Project Euclid: 13 December 2011

Permanent link to this document
https://projecteuclid.org/euclid.bbms/1323787171

Digital Object Identifier
doi:10.36045/bbms/1323787171

Mathematical Reviews number (MathSciNet)
MR2918650

Zentralblatt MATH identifier
1230.35078

Subjects
Primary: 35J60: Nonlinear elliptic equations 35J20: Variational methods for second-order elliptic equations 35J70: Degenerate elliptic equations

Keywords
Eigenvalue problem degenerate and singular elliptic operator Caffarelli-Kohn-Nirenberg inequality

Citation

Mihăilescu, Mihai; Repovš, Dušan. An eigenvalue problem involving a degenerate and singular elliptic operator. Bull. Belg. Math. Soc. Simon Stevin 18 (2011), no. 5, 839--847. doi:10.36045/bbms/1323787171. https://projecteuclid.org/euclid.bbms/1323787171


Export citation