Bulletin of the Belgian Mathematical Society - Simon Stevin

On entire solutions of $f^{2}(z)+cf'(z)=h(z)$

Weiran Lü and Chungchun Yang

Full-text: Open access

Abstract

We investigate the existence of entire solutions of non-linear differential equations of type $f^{2}(z)+cf'(z)=h(z),$ where $h(z)$ is a given entire function, whose zeros form an $A-$set. As a by-product of the studies, we give a negative answer to an open question raised in [4].

Article information

Source
Bull. Belg. Math. Soc. Simon Stevin, Volume 18, Number 5 (2011), 835-838.

Dates
First available in Project Euclid: 13 December 2011

Permanent link to this document
https://projecteuclid.org/euclid.bbms/1323787170

Digital Object Identifier
doi:10.36045/bbms/1323787170

Mathematical Reviews number (MathSciNet)
MR2918649

Zentralblatt MATH identifier
1243.30064

Subjects
Primary: 30D35: Distribution of values, Nevanlinna theory 34A20

Keywords
value distribution theory differential equation entire solution generalized $A-$set

Citation

Lü, Weiran; Yang, Chungchun. On entire solutions of $f^{2}(z)+cf'(z)=h(z)$. Bull. Belg. Math. Soc. Simon Stevin 18 (2011), no. 5, 835--838. doi:10.36045/bbms/1323787170. https://projecteuclid.org/euclid.bbms/1323787170


Export citation