Bulletin of the Belgian Mathematical Society - Simon Stevin

Constant angle surfaces in Minkowski space

Rafael López and Marian Ioan Munteanu

Full-text: Open access

Abstract

A constant angle surface in Minkowski space is a spacelike surface whose unit normal vector field makes a constant hyperbolic angle with a fixed timelike vector. In this work we study and classify these surfaces. In particular, we show that they are flat. Next we prove that a tangent developable surface (resp. cylinder, cone) is a constant angle surface if and only if the generating curve is a helix (resp. a straight line, a circle).

Article information

Source
Bull. Belg. Math. Soc. Simon Stevin, Volume 18, Number 2 (2011), 271-286.

Dates
First available in Project Euclid: 7 June 2011

Permanent link to this document
https://projecteuclid.org/euclid.bbms/1307452077

Digital Object Identifier
doi:10.36045/bbms/1307452077

Mathematical Reviews number (MathSciNet)
MR2847763

Zentralblatt MATH identifier
1220.53024

Subjects
Primary: 53B25: Local submanifolds [See also 53C40]

Keywords
constant angle surfaces Minkowski space helix

Citation

López, Rafael; Munteanu, Marian Ioan. Constant angle surfaces in Minkowski space. Bull. Belg. Math. Soc. Simon Stevin 18 (2011), no. 2, 271--286. doi:10.36045/bbms/1307452077. https://projecteuclid.org/euclid.bbms/1307452077


Export citation