Bulletin of the Belgian Mathematical Society - Simon Stevin

Cone-Decompositions of the Special Unitary Groups

Hiroyuki Kadzisa

Full-text: Open access

Abstract

The Lusternik-Schnirelmann category of a space is a homotopy invariant. Cone-decompositions are used to give an upper bound for Lusternik-Schnirelmann categories of topological spaces. The purpose of this paper is to construct cone-decompositions of the special unitary groups, for which we use a filtration due to Miller. We observe also that Miller's filtration is closely related to a CW-decomposition.

Article information

Source
Bull. Belg. Math. Soc. Simon Stevin, Volume 17, Number 4 (2010), 749-764.

Dates
First available in Project Euclid: 24 November 2010

Permanent link to this document
https://projecteuclid.org/euclid.bbms/1290608200

Digital Object Identifier
doi:10.36045/bbms/1290608200

Mathematical Reviews number (MathSciNet)
MR2778450

Zentralblatt MATH identifier
1210.55002

Subjects
Primary: 55M30: Ljusternik-Schnirelman (Lyusternik-Shnirelʹman) category of a space 55P05: Homotopy extension properties, cofibrations 22E15: General properties and structure of real Lie groups 57N60: Cellularity

Keywords
Lusternik-Schnirelmann category Cone-decomposition Special unitary Group Cellular decomposition

Citation

Kadzisa, Hiroyuki. Cone-Decompositions of the Special Unitary Groups. Bull. Belg. Math. Soc. Simon Stevin 17 (2010), no. 4, 749--764. doi:10.36045/bbms/1290608200. https://projecteuclid.org/euclid.bbms/1290608200


Export citation