Bulletin of the Belgian Mathematical Society - Simon Stevin

Existence results for degenerate quasilinear elliptic equations in weighted Sobolev spaces

Albo Carlos Cavalheiro

Full-text: Open access

Abstract

In this paper we are interested in the existence of solutions for Dirichlet problem associated to the degenerate quasilinear elliptic equations $$-\,{\rm div}\, [v(x)\,{\cal A}(x, u, {\nabla}u)] + {\omega}(x){\cal A}_0(x,u(x))= f_0 - \sum_{j=1}^nD_jf_j, \ \ {\rm on } \ \ {\Omega}$$ in the setting of the weighted Sobolev spaces ${\rm W}_0^{1,p}(\Omega,\omega,v)$.

Article information

Source
Bull. Belg. Math. Soc. Simon Stevin, Volume 17, Number 1 (2010), 141-153.

Dates
First available in Project Euclid: 5 March 2010

Permanent link to this document
https://projecteuclid.org/euclid.bbms/1267798504

Mathematical Reviews number (MathSciNet)
MR2656677

Zentralblatt MATH identifier
1189.35123

Subjects
Primary: 37J70 35J60: Nonlinear elliptic equations

Keywords
degenerate quasilinear elliptic equations weighted Sobolev spaces

Citation

Cavalheiro, Albo Carlos. Existence results for degenerate quasilinear elliptic equations in weighted Sobolev spaces. Bull. Belg. Math. Soc. Simon Stevin 17 (2010), no. 1, 141--153. https://projecteuclid.org/euclid.bbms/1267798504


Export citation