Bulletin of the Belgian Mathematical Society - Simon Stevin

Lotkaian informetrics and applications to social networks

Leo Egghe

Full-text: Open access

Abstract

Two-dimensional informetrics is defined in the general context of sources that produce items and examples are given. These systems are called ``Information Production Processes'' (IPPs). They can be described by a size-frequency function $f$ or, equivalently, by a rank-frequency function $g$. If $f$ is a decreasing power law then we say that this function is the law of Lotka and it is equivalent with the power law $g$ which is called the law of Zipf. Examples in WWW are given. Next we discuss the scale-free property of $f$ also allowing for the interpretation of a Lotkaian IPP (i.e. for which $f$ is the law of Lotka) as a self-similar fractal. Then we discuss dynamical aspects of (Lotkaian) IPPs by introducing an item-transformation $\varphi$ and a source-transformation $\psi$. If these transformations are power functions we prove that the transformed IPP is Lotkaian and we present a formula for the exponent of the Lotka law. Applications are given on the evolution of WWW and on IPPs without low productive sources (e.g. sizes of countries, municipalities or databases). Lotka's law is then used to model the cumulative first citation distribution and examples of good fit are given. Finally, Lotka's law is applied to the study of performance indices such as the $h$-index (Hirsch) or the $g$-index (Egghe). Formulas are given for the $h$- and $g$-index in Lotkaian IPPs and applications are given.

Article information

Source
Bull. Belg. Math. Soc. Simon Stevin, Volume 16, Number 4 (2009), 689-703.

Dates
First available in Project Euclid: 9 November 2009

Permanent link to this document
https://projecteuclid.org/euclid.bbms/1257776242

Digital Object Identifier
doi:10.36045/bbms/1257776242

Mathematical Reviews number (MathSciNet)
MR2583554

Zentralblatt MATH identifier
1176.94022

Subjects
Primary: 94A15: Information theory, general [See also 62B10, 81P94]

Keywords
law of Lotka law of Zipf information production process IPP fractal dynamics cumulative first-citation distribution $h$-index Hirsch-index $g$-index

Citation

Egghe, Leo. Lotkaian informetrics and applications to social networks. Bull. Belg. Math. Soc. Simon Stevin 16 (2009), no. 4, 689--703. doi:10.36045/bbms/1257776242. https://projecteuclid.org/euclid.bbms/1257776242


Export citation