Bulletin of the Belgian Mathematical Society - Simon Stevin

The arithmetic of curves over two dimensional local fields

Belgacem Draouil

Full-text: Open access

Abstract

We study the class field theory of curves defined over two dimensional local fields. The approach used here is a combination of the work of Kato-Saito and Yoshida where the base field is one dimensional.

Article information

Source
Bull. Belg. Math. Soc. Simon Stevin, Volume 16, Number 3 (2009), 565-575.

Dates
First available in Project Euclid: 1 September 2009

Permanent link to this document
https://projecteuclid.org/euclid.bbms/1251832380

Digital Object Identifier
doi:10.36045/bbms/1251832380

Mathematical Reviews number (MathSciNet)
MR2566875

Zentralblatt MATH identifier
1251.11048

Subjects
Primary: 11G25: Varieties over finite and local fields [See also 14G15, 14G20] 14H25: Arithmetic ground fields [See also 11Dxx, 11G05, 14Gxx]

Keywords
Bloch-Ogus complex Generalized reciprocity map Higher local fields Curves over local fields

Citation

Draouil, Belgacem. The arithmetic of curves over two dimensional local fields. Bull. Belg. Math. Soc. Simon Stevin 16 (2009), no. 3, 565--575. doi:10.36045/bbms/1251832380. https://projecteuclid.org/euclid.bbms/1251832380


Export citation