Open Access
November 2007 The asymptotical case of certain quasiconformal extension results for holomorphic mappings in $\mathbb{C}^n$
Paula Curt, Gabriela Kohr
Bull. Belg. Math. Soc. Simon Stevin 14(4): 653-667 (November 2007). DOI: 10.36045/bbms/1195157134

Abstract

Let $f(z,t)$ be a non-normalized subordination chain and assume that $f(\cdot,t)$ is $K$-quasiregular on $B^n$ for $t\in [0,\alpha]$. In this paper we obtain a sufficient condition for $f(\cdot,0)$ to be extended to a quasiconformal homeomorphism of $\overline{\mathbb{R}}^{2n}$ onto $\overline{\mathbb{R}}^{2n}$. Finally we obtain certain applications of this result. One of these applications can be considered the asymptotical case of the $n$-dimensional version of the well known quasiconformal extension result due to Ahlfors and Becker.

Citation

Download Citation

Paula Curt. Gabriela Kohr. "The asymptotical case of certain quasiconformal extension results for holomorphic mappings in $\mathbb{C}^n$." Bull. Belg. Math. Soc. Simon Stevin 14 (4) 653 - 667, November 2007. https://doi.org/10.36045/bbms/1195157134

Information

Published: November 2007
First available in Project Euclid: 15 November 2007

zbMATH: 1135.32017
MathSciNet: MR2384461
Digital Object Identifier: 10.36045/bbms/1195157134

Subjects:
Primary: 30C45 , 32H

Keywords: biholomorphic mapping , Loewner chain , Loewner differential equation , quasiconformal extension , quasiconformal mapping , quasiregular mapping , Subordination , subordination chain

Rights: Copyright © 2007 The Belgian Mathematical Society

Vol.14 • No. 4 • November 2007
Back to Top