Bulletin of the Belgian Mathematical Society - Simon Stevin

On the Hochschild cohomology of Beurling Algebras

E. Feizi and A. Pourabbas

Full-text: Open access

Abstract

Let $G$ be a locally compact group and let $\omega$ be a weight function on $G$. Under a very mild assumption on $\omega$, we show that $L^1(G,\omega)$ is (2n+1)-weakly amenable for every $n\in \mathbb Z^+$. Also for every odd $n\in\mathbb{N}$ we show that $\h^2(L^1(G,\omega),(L^1(G,\omega))^{(n)})$ is a Banach space.

Article information

Source
Bull. Belg. Math. Soc. Simon Stevin, Volume 13, Number 2 (2006), 305-318.

Dates
First available in Project Euclid: 19 May 2006

Permanent link to this document
https://projecteuclid.org/euclid.bbms/1148059465

Digital Object Identifier
doi:10.36045/bbms/1148059465

Mathematical Reviews number (MathSciNet)
MR2259909

Zentralblatt MATH identifier
1138.43004

Subjects
Primary: 43A20: $L^1$-algebras on groups, semigroups, etc.
Secondary: 46M20: Methods of algebraic topology (cohomology, sheaf and bundle theory, etc.) [See also 14F05, 18Fxx, 19Kxx, 32Cxx, 32Lxx, 46L80, 46M15, 46M18, 55Rxx]

Keywords
weak amenability cohomology Beurling algebra

Citation

Feizi, E.; Pourabbas, A. On the Hochschild cohomology of Beurling Algebras. Bull. Belg. Math. Soc. Simon Stevin 13 (2006), no. 2, 305--318. doi:10.36045/bbms/1148059465. https://projecteuclid.org/euclid.bbms/1148059465


Export citation