Bulletin of the Belgian Mathematical Society - Simon Stevin

The Clifford-Laguerre Continuous Wavelet Transform

Fred Brackx, Nele De Schepper, and Frank Sommen

Full-text: Open access

Abstract

Higher dimensional wavelets are constructed in the framework of Clifford analysis by taking the Clifford-monogenic extension of specific functions. Clifford-monogenic functions are direct higher dimensional generalizations of holomorphic functions in the complex plane. In this way also new generalized polynomials, the so-called Clifford-Laguerre polynomials, are obtained.

Article information

Source
Bull. Belg. Math. Soc. Simon Stevin, Volume 11, Number 2 (2004), 201-215.

Dates
First available in Project Euclid: 11 June 2004

Permanent link to this document
https://projecteuclid.org/euclid.bbms/1086969312

Digital Object Identifier
doi:10.36045/bbms/1086969312

Mathematical Reviews number (MathSciNet)
MR2080422

Zentralblatt MATH identifier
1077.42026

Subjects
Primary: 42B10: Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
Secondary: 44A15: Special transforms (Legendre, Hilbert, etc.) 30G35: Functions of hypercomplex variables and generalized variables

Keywords
continuous wavelet transform Clifford analysis

Citation

Brackx, Fred; De Schepper, Nele; Sommen, Frank. The Clifford-Laguerre Continuous Wavelet Transform. Bull. Belg. Math. Soc. Simon Stevin 11 (2004), no. 2, 201--215. doi:10.36045/bbms/1086969312. https://projecteuclid.org/euclid.bbms/1086969312


Export citation