Bulletin of the Belgian Mathematical Society - Simon Stevin

Invariant locally φ-symmetric contact structures on Lie groups

Eric Boeckx

Full-text: Open access

Abstract

We are interested in the question whether every strongly locally $\varphi$-symmetric contact metric space is a $(\kappa,\mu)$-space. In this paper, we show that the answer is positive for left-invariant contact metric structures on Lie groups.

Article information

Source
Bull. Belg. Math. Soc. Simon Stevin, Volume 10, Number 3 (2003), 391-407.

Dates
First available in Project Euclid: 12 September 2003

Permanent link to this document
https://projecteuclid.org/euclid.bbms/1063372345

Mathematical Reviews number (MathSciNet)
MR2016811

Zentralblatt MATH identifier
1038.53070

Subjects
Primary: 53D10: Contact manifolds, general
Secondary: 53C25: Special Riemannian manifolds (Einstein, Sasakian, etc.)

Keywords
contact metric structures on Lie groups (κ,μ)-contact metric spaces locally φ-symmetric contact metric spaces isometric reflections

Citation

Boeckx, Eric. Invariant locally φ-symmetric contact structures on Lie groups. Bull. Belg. Math. Soc. Simon Stevin 10 (2003), no. 3, 391--407. https://projecteuclid.org/euclid.bbms/1063372345


Export citation