Bulletin (New Series) of the American Mathematical Society

Finite sections of Segal-Bargmann space Toeplitz operators with polyradially continuous symbols

Albrecht Böttcher and Hartmut Wolf

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 25, Number 2 (1991), 365-372.

Dates
First available in Project Euclid: 5 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183657184

Mathematical Reviews number (MathSciNet)
MR1090404

Zentralblatt MATH identifier
0751.47010

Subjects
Primary: 47B35: Toeplitz operators, Hankel operators, Wiener-Hopf operators [See also 45P05, 47G10 for other integral operators; see also 32A25, 32M15]
Secondary: 45L05: Theoretical approximation of solutions {For numerical analysis, see 65Rxx}

Citation

Böttcher, Albrecht; Wolf, Hartmut. Finite sections of Segal-Bargmann space Toeplitz operators with polyradially continuous symbols. Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 2, 365--372. https://projecteuclid.org/euclid.bams/1183657184


Export citation

References

  • 1. S. Axler, Bergman spaces and their operators, Surveys of Some Recent Results in Operator Theory, Pitman Res. Notes, vol. 171, Longman, 1988, pp. 1-50.
  • 2. C. A. Berger and L. A. Coburn, Toeplitz operators and quantum mechanics, J. Funct. Anal. 68 (1986), 273-299.
  • 3. C. A. Berger and L. A. Coburn, Toeplitz operators on the Segal-Bargmann space, Trans. Amer. Math. Soc. 301 (1987), 813-829.
  • 4. A. Böttcher, Truncated Toeplitz operators on the polydisk, Monatsh. Math. 110 (1990), 23-32.
  • 5. A. Böttcher and B. Silbermann, The finite section method for Toeplitz operators on the quarter-plane with piecewise continuous symbols, Math. Nachr. 110 (1983), 279-291.
  • 6. A. Böttcher and B. Silbermann, Analysis of Toeplitz operators, Akademie-Verlag, 1989 and Springer-Verlag, 1990.
  • 7. R. G. Douglas and R. Howe, On the C*-algebra of Toeplitz operators on the quarter-plane, Trans. Amer. Math. Soc. 158 (1971), 203-217.
  • 8. I. Gohberg and I. A. Feldman, Convolution equations and projection methods for their solution, Transl. Math. Monographs, vol. 41, Amer. Math. Soc., Providence, RI, 1974.
  • 9. A. V. Kozak, On the finite section method for multidimensional discrete convolutions, Mat. Issled. 8 (29) (1973), 157-160. (Russian)
  • 10. V. S. Pilidi, On multidimensional bisingular operators, Dokl. Akad. Nauk SSSR 201 (1971), 787-789. (Russian)
  • 11. I. B. Simonenko, On multidimensional discrete convolutions, Mat. Issled. 1 (3) (1968), 108-122. (Russian)
  • 12. H. Widom, Asymptotic behavior of block Toeplitz matrices and determinants II, Adv. in Math. 21 (1976), 1-29.