Bulletin (New Series) of the American Mathematical Society

Harish-Chandra and his work

Rebecca A. Herb

Full-text: Open access

Article information

Bull. Amer. Math. Soc. (N.S.) Volume 25, Number 1 (1991), 1-17.

First available in Project Euclid: 5 July 2007

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 22E46: Semisimple Lie groups and their representations


Herb, Rebecca A. Harish-Chandra and his work. Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 1, 1--17.https://projecteuclid.org/euclid.bams/1183657040

Export citation


  • [Ba] V. Bargmann, Irreducible unitary representations of the Lorentz group, Ann. of Math. (2) 48 (1947), 568-640.
  • [Bu] W. Burnside, Theory of groups of finite order, Cambridge Univ. Press, Cambridge, 1897.
  • [C1] C. Chevalley, Theory of Lie groups. I, Princeton Univ. Press, Princeton, NJ, 1946.
  • [C2] C. Chevalley, Theory of Lie groups. II, Hermann, Paris, 1951.
  • [C3] C. Chevalley, Theory of Lie groups. III, Hermann, Paris, 1955.
  • [D] M. Duflo, On the Plancherel formula of almost-algebraic real Lie groups, Lecture Notes in Math., vol. 1077, Springer-Verlag, 1984, pp. 101-165.
  • [GN] I. M. Gelfand and M. A. Naimark, Unitary representations of the classical groups, Trudy Mat. Inst. Steklov. 36 (1950).
  • [H] Harish-Chandra, Collected papers, 4 volumes, Springer-Verlag, New York, 1984.
  • [L] R. P. Langlands, Harish-Chandra, Biographical Memoirs of Fellows of the Royal Society 31 (1985), 197-225.
  • [M1] G. Mackey, Theory of unitary group representations, Univ. of Chicago Press, Chicago, IL, 1976.
  • [M2] G. Mackey, Induced representations of groups and quantum mechanics, W. A. Benjamin, New York, 1968.
  • [V] V. S. Varadarajan, Harish-Chandra, Indian Math. Soc. (N.S.) (1991).
  • [W] E. Wigner, On unitary representations of the inhomogeneous Lorentz group, Ann. of Math. (2) 40 (1939), 149-204.