Bulletin (New Series) of the American Mathematical Society

Some new results on the topology of nonsingular real algebraic sets

Selman Akbulut and Henry King

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 23, Number 2 (1990), 441-446.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183555896

Mathematical Reviews number (MathSciNet)
MR1053986

Zentralblatt MATH identifier
0723.14039

Subjects
Primary: 58A07: Real-analytic and Nash manifolds [See also 14P20, 32C07] 32C05: Real-analytic manifolds, real-analytic spaces [See also 14Pxx, 58A07] 14G30 57R99: None of the above, but in this section

Citation

Akbulut, Selman; King, Henry. Some new results on the topology of nonsingular real algebraic sets. Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 441--446. https://projecteuclid.org/euclid.bams/1183555896


Export citation

References

  • [AK1] S. Akbulut and H. King, The topology of real algebraic sets with isolated singularities, Ann. of Math. 113 (1981), 425-446.
  • [AK2] S. Akbulut and H. King, The topology of real algebraic sets, Enseign. Math. 29 (1983), 221-261.
  • [AK3] S. Akbulut and H. King, Real algebraic structures on topological spaces, Publ. I.H.E.S. no. 53 (1981), 79-162.
  • [AK4] S. Akbulut and H. King, On approximating submanifolds by algebraic sets(to appear).
  • [AK5] S. Akbulut and H. King, Algebraicity of immersions(to appear).
  • [AK6] S. Akbulut and H. King, Submanifolds and homology of nonsingular algebraic varieties, Amer. J. Math. (1985), 45-83.
  • [I] N. V. Ivanov, An improvement of the Nash-Tognoli theorem, Issled. Topol. Steklov Math. Inst. 122 (1982), 66-71.
  • [K] H. King, Survey on the topology of real algebraic sets, Rocky Mountain J. Math. 14(1984), 821-830.
  • [N] J. Nash, Real algebraic manifolds, Ann. of Math. 56 (1952), 405-421.
  • [S] H. Seifert, Algebraische approximation von mannigfaltigkeiten, Math. Z. 41 (1936), 1-17.
  • [T1 ] A. Tognoli, Algebraic approximation of manifolds and spaces, Lecture Notes in Math., vol. 842, Springer-Verlag, Berlin and New York, 1981, pp. 73-94.
  • [T2] A. Tognoli, Any compact differentiable submanifold of Rn has algebraic approximation in Rn, Topology 27 (1988), 205-210.
  • [W] A. Wallace, Algebraic approximations of manifolds, Proc. London Math. Soc. 7(1957), 196-210.
  • [We] R. Wells, Cobordism groups of immersions, Topology 5 (1966), 281-294.