Bulletin (New Series) of the American Mathematical Society

Review: Nolan R. Wallach, Real reductive groups. I

David H. Collingwood

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 22, Number 1 (1990), 183-198.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183555473

Citation

Collingwood, David H. Review: Nolan R. Wallach, Real reductive groups. I. Bull. Amer. Math. Soc. (N.S.) 22 (1990), no. 1, 183--198. https://projecteuclid.org/euclid.bams/1183555473


Export citation

References

  • 1. Harish-Chandra, Harmonic analysis on semisimple Lie groups. Bull. Amer. Math. Soc. 76 (1970), 529-551.
  • 2. Harish-Chandra, Harish-Chandra's collected papers (V. S. Varadarajan, editor), vols. 1-4, Springer-Verlag, Berlin and New York, 1984.
  • 3. A. Knapp, Representation theory of semisimple groups, Princeton Math. Series 36, Princeton Univ. Press, Princeton, N. J., 1986.
  • 4. A. Knapp and G. Zuckerman, Classification of irreducible tempered representations of semisimple Lie groups, Ann. of Math. (2) 116 (1982), 389-501.
  • 5. D. Vogan, Representations of real reductive Lie groups, Progress in Math. 15, Birkhauser, 1981.
  • 6. N. Wallach, On the unitarizability of derived functor modules, Invent. Math. 78 (1984), 131-141.