Bulletin (New Series) of the American Mathematical Society

Self-maps of classifying spaces of compact simple Lie groups

Stefan Jackowski, James E. McClure, and Bob Oliver

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 22, Number 1 (1990), 65-72.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183555455

Mathematical Reviews number (MathSciNet)
MR1010725

Zentralblatt MATH identifier
0692.55013

Subjects
Primary: 55S37: Classification of mappings
Secondary: 55N91: Equivariant homology and cohomology [See also 19L47] 55R35: Classifying spaces of groups and $H$-spaces

Citation

Jackowski, Stefan; McClure, James E.; Oliver, Bob. Self-maps of classifying spaces of compact simple Lie groups. Bull. Amer. Math. Soc. (N.S.) 22 (1990), no. 1, 65--72. https://projecteuclid.org/euclid.bams/1183555455


Export citation

References

  • 1. W. Dwyer and G. Mislin, On the homotopy type of the components of map(BS3, BS3), Lecture Notes in Math., vol. 1298, Springer-Verlag, Berlin and New York, 1987, pp. 82-89.
  • 2. W. Dwyer and A. Zabrodsky, Maps between classifying spaces, Lecture Notes in Math., vol. 1298, Springer-Verlag, Berlin and New York, 1987, pp. 106-119.
  • 3. J. Hubbuck, Homotopy homomorphisms of Lie groups, New Developments in Topology, Cambridge Univ. Press, 1974, pp. 33-41.
  • 4. J. Hubbuck, Mapping degrees for classifying spaces. I, Quart. J. Math. Oxford Ser.(2) 25 (1974), 113-133.
  • 5. K. Ishiguro, Unstable Adams operations on classifying spaces, Math. Proc. Cambridge Philos. Soc. 102 (1987), 71-75.
  • 6. S. Jackowski and J. McClure, Homotopy approximations for classifying spaces of compact Lie groups, Lecture Notes in Math., vol. 1370, Springer-Verlag, Berlin and New York, 1989, pp. 221-234.
  • 7. G. Mislin, The homotopy classification of self-maps of infinite quaternionic projective space, Quart. J. Math. Oxford 38 (1987), 245-257.
  • 8. D. Notbohm, Abbildungen zwischen klassifizierenden Räumen, dissertation, Göttingen, 1988.
  • 9. R. Oliver, Smooth compact Lie group actions on disks, Math. Z. 149 (1976), 79-96.
  • 10. R. Oliver, A proof of the Conner conjecture, Ann. of Math. (2) 103 (1976), 637-644.
  • 11. D. Sullivan, Geometric topology, Part I: Localization, periodicity and Galois symmetry, Mimeographed notes, M.I.T., 1970.
  • 12. C. W. Wilkerson, Self-maps of classifying spaces, Localization in group theory and homotopy theory, Lecture Notes in Math., vol. 418, Springer-Verlag, 1974, pp. 150-157.
  • 13. S. Willson, Equivariant homology theories on G-complexes, Trans. Amer. Math. Soc. 212 (1975), 155-171.
  • 14. Z. Wojtkowiak, On maps from holim F to Z, Lecture Notes in Math., vol. 1298, Springer-Verlag, Berlin and New York, 1987, pp. 227-236.
  • 15. A. Zabrodsky, Maps between classifying spaces, Algebraic topology and algebraic K-theory, Ann. of Math. Studies 113, Princeton Univ. Press, 1987, 228-246.
  • 16. G. Carlsson, Equivariant stable homotopy and Sullivan's conjecture (to appear).
  • 17. J. Lannes, Sur la cohomology modulo p des p-groupes abéliens élémentaires, Homotopy Theory, Proc. Durham Sympos. 1985, Cambridge Univ. Press, 1987, pp. 97-116.
  • 18. H. Miller (to appear).