Bulletin (New Series) of the American Mathematical Society

Review: Yuri I. Manin, Gauge field theory and complex geometry

Claude Lebrun

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 21, Number 1 (1989), 192-196.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183555155

Citation

Lebrun, Claude. Review: Yuri I. Manin, Gauge field theory and complex geometry. Bull. Amer. Math. Soc. (N.S.) 21 (1989), no. 1, 192--196. https://projecteuclid.org/euclid.bams/1183555155


Export citation

References

  • 1. M. Atiyah, N. Hitchin, V. Drinfeld, and Y. Manin, Construction of instantons, Phys. Lett. 65A (1978), 185-187.
  • 2. R. Baston and L. Mason, Conformal gravity, the Einstein equations, and spaces of complex null geodesics, Class Quantum Grav. 4 (1987), 815-826.
  • 3. F. Berezin and D. Leites, Supermanifolds, Soviet Math. Dokl. 16 (1975), 1218-1221.
  • 4. S. Donaldson, The geometry of 4-manifolds, Proc. Internat. Congr. Math., Berkeley, 1986, pp. 43-54; Amer. Math. Soc., Providence, R. I., 1987.
  • 5. M. Green, J. Schwarz, and E. Witten, Superstring theory, Cambridge Univ. Press, 1987.
  • 6. J. Isenberg, P. Yasskin, and P. Green, Non-self-dual gauge fields, Phys. Lett. 78B (1978), 462-464.
  • 7. B. Kostant, Graded manifolds, graded Lie theory, and prequantization, Differential Geometric Methods in Mathematicas Physics, Lecture Notes in Math., vol. 570, Springer-Verlag, Berlin and New York, 1977.
  • 8. C. LeBrun, Thickenings and gauge fields, Class. Quantum Grav. 3 (1986), 1039-1059.
  • 9. C. LeBrun, Thickenings and conformal gravity, preprint, 1989.
  • 10. C. LeBrun and M. Rothstein, Moduli of super Riemann surfaces, Commun. Math. Phys. 117 (1988), 159-176.
  • 11. Y. Manin, Critical dimensions of string theories and the dualizing sheaf on the moduli space of (super) curves, Funct. Anal. Appl. 20 (1987), 244-245.
  • 12. R. Penrose and W. Rindler, Spinors and space-time, V. 2, spinor and twistor methods in space-time geometry, Cambridge Univ. Press, 1986.
  • 13. R. Ward, On self-dual gauge fields, Phys. Lett. 61A (1977), 81-82.
  • 14. E. Witten, An interpretation of classical Yang-Mills theory, Phys. Lett. 77NB (1978), 394-398.
  • 15. E. Witten, Twistor-like transform in ten dimensions, Nucl. Phys. B266 (1986), 245-264.
  • 16. E. Witten, Physics and geometry, Proc. Internat. Congr. Math., Berkeley, 1986, pp. 267-302, Amer. Math. Soc., Providence, R. I., 1987.