Bulletin (New Series) of the American Mathematical Society

A critique of numerical analysis

Peter Linz

Full-text: Open access

Article information

Bull. Amer. Math. Soc. (N.S.), Volume 19, Number 2 (1988), 407-416.

First available in Project Euclid: 4 July 2007

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 65-02: Research exposition (monographs, survey articles)


Linz, Peter. A critique of numerical analysis. Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 407--416. https://projecteuclid.org/euclid.bams/1183554721

Export citation


  • 1. I. Babuska and W. C. Rheinboldt, A-posteriori error estimates for the finite element method, Internat. J. Numer. Methods Engrg. 12 (1978), 1597-1615.
  • 2. E. Isaacson and H. B. Keller, Analysis of numerical methods, Wiley, New York, 1966.
  • 3. P. Linz, Uncertainty in the solution of linear operator equations, BIT 24 (1984), 92-101.
  • 4. P. Linz, Precise bounds for inverses of integral equation operators, Internat. J. Comput. Math. 24 (1988), 73-81.
  • 5. P. Linz, Approximate solution of Fredholm integral equations with accurate and computable error bounds, Tech. Report CSE-87-6, Division of Computer Science, Univ. of California, Davis, 1987.
  • 6. J. R. Rice and R. F. Boisvert, Solving elliptic problems using ELLPACK, Springer-Verlag, Berlin and New York, 1985.
  • 7. S. Smale, Efficiency of algorithms of analysis, Bull. Amer. Math. Soc. (N.S.) 13 (1985), 94-118.
  • 8. J. Traub and H. Wozniakowsi, A general theory of optimal algorithm, Academic Press, New York, 1980.
  • 9. O. C. Zienkiewicz and A. W. Craig, A-posteriori error estimation and adaptive mesh refinement in the finite element method, The Mathematical Basis of Finite Element Methods (D. F. Griffiths, ed.), Clarendon Press, 1984.