Bulletin (New Series) of the American Mathematical Society

Topological rigidity for hyperbolic manifolds

F. T. Farrell and L. E. Jones

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 19, Number 1 (1988), 277-282.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183554645

Mathematical Reviews number (MathSciNet)
MR940487

Zentralblatt MATH identifier
0664.57011

Subjects
Primary: 18F25: Algebraic $K$-theory and L-theory [See also 11Exx, 11R70, 11S70, 12- XX, 13D15, 14Cxx, 16E20, 19-XX, 46L80, 57R65, 57R67] 22E40: Discrete subgroups of Lie groups [See also 20Hxx, 32Nxx] 57D50

Citation

Farrell, F. T.; Jones, L. E. Topological rigidity for hyperbolic manifolds. Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 1, 277--282. https://projecteuclid.org/euclid.bams/1183554645


Export citation

References

  • 1. D. V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Steklov Inst. Math. 90 (1969).
  • 2. D. Burghelea and R. Lashof, Stability of concordances and the suspension homomorphism, Ann. of Math. (2) 105 (1977), 449-472.
  • 3. T. A. Chapman and S. Ferry, Approximating homotopy equivalences by homeomorphisms, Amer. J. Math. 101 (1979), 567-582.
  • 4. F. T. Farrell and W. -C. Hsiang, On the rational homotopy groups of the diffeomorphism groups of discs, spheres, and aspherical manifolds, Proc. Sympos. Pure Math. vol. 32, Amer. Math. Soc. Providence, R. I., 1978, pp. 325-337.
  • 5. F. T. Farrell and W. -C. Hsiang, On Novikov's conjecture for non-positively curved manifolds. I, Ann. of Math. (2) 113 (1981), 199-209.
  • 6. F. T. Farrell and W. -C. Hsiang, The stable topological-hyperbolic space form problem for finite volume manifolds, Invent. Math. 69 (1982), 155-170.
  • 7. F. T. Farrell and W. -C. Hsiang, Topological characterization of flat and almost flat Riemannian manifolds Mn (n ≠ 3, 4), Amer. J. Math. 105 (1983), 641-672.
  • 8. F. T. Farrell and L. E. Jones, K-theory and dynamics. I, Ann. of Math. (2) 124 (1986), 531-569.
  • 9. F. T. Farrell and L. E. Jones, K-theory and dynamics. II, Ann. of Math. (2) 126 (1987), 451-493.
  • 10. F. T. Farrell and L. E. Jones, The surgery L-groups of poly-(finite or cyclic) groups, Invent. Math. (1988).
  • 11. F. T. Farrell and L. E. Jones, Foliated control theory. I and II, submitted for publication.
  • 12. F. T. Farrell and L. E. Jones, Topological analogue of Mostow's rigidity theorem, in preparation.
  • 13. M. Gromov, Manifolds of negative curvature, J. Differential Geom. 13 (1978), 223-230.
  • 14. A. E. Hatcher, Concordance spaces, higher simple homotopy theory, and applications, Proc. Sympos. Pure Math., vol. 32, Amer. Math. Soc., Providence, R. I., 1978, pp. 3-21.
  • 15. K. Igusa, Stability of pseudoisotopies, Seminar Notes 1, Aarhus Univ., Matematisk Institut, Aarhus, Denmark, 1982, pp. 27-37.
  • 16. L. E. Jones, The nonsimply connected characteristic variety theorem, Proc. Sympos. Pure Math., vol 32, Amer. Math. Soc., Providence, R. I., 1978, pp. 131-140.
  • 17. R. C. Kirby and L. C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Ann. of Math. Studies, Princeton Univ. Press, Princeton, N. J., 1977.
  • 18. G. D. Mostow, Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms, Publ. Inst. Hautes Études Sci. 34 (1967), 53-104.
  • 19. F. Quinn, Ends of maps. I, Ann. of Math. (2) 110 (1979), 275-331.
  • 20. F. Waldhausen, Algebraic K-theory of topological spaces. I, Proc. Sympos. Pure Math., vol 32, Amer. Math. Soc., Providence, R. I., 1978, pp. 35-60.
  • 21. C. T. C. Wall, Surgery on compact manifolds, Academic Press, New York, 1970.
  • 22. K. Igusa, The stability theorem for pseudoisotopies, preprint.