## Bulletin (New Series) of the American Mathematical Society

- Bull. Amer. Math. Soc. (N.S.)
- Volume 17, Number 2 (1987), 211-273.

### The structure of algebraic threefolds: an introduction to Mori's program

#### Article information

**Source**

Bull. Amer. Math. Soc. (N.S.), Volume 17, Number 2 (1987), 211-273.

**Dates**

First available in Project Euclid: 4 July 2007

**Permanent link to this document**

https://projecteuclid.org/euclid.bams/1183554173

**Mathematical Reviews number (MathSciNet)**

MR903730

**Zentralblatt MATH identifier**

0649.14022

**Subjects**

Primary: 14-02: Research exposition (monographs, survey articles) 14E30: Minimal model program (Mori theory, extremal rays) 14E35 32J25: Transcendental methods of algebraic geometry [See also 14C30] 14J10: Families, moduli, classification: algebraic theory 14J15: Moduli, classification: analytic theory; relations with modular forms [See also 32G13] 14E05: Rational and birational maps 14J30: $3$-folds [See also 32Q25]

#### Citation

Kollár, János. The structure of algebraic threefolds: an introduction to Mori's program. Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 2, 211--273. https://projecteuclid.org/euclid.bams/1183554173