Bulletin (New Series) of the American Mathematical Society

On the decidability of Diophantine problems in combinatorial geometry

Bernd Sturmfels

Full-text: Open access

Article information

Bull. Amer. Math. Soc. (N.S.), Volume 17, Number 1 (1987), 121-124.

First available in Project Euclid: 4 July 2007

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 52A25 05B35: Matroids, geometric lattices [See also 52B40, 90C27]
Secondary: 11U05: Decidability [See also 03B25]


Sturmfels, Bernd. On the decidability of Diophantine problems in combinatorial geometry. Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 121--124. https://projecteuclid.org/euclid.bams/1183553968

Export citation


  • 1. A. Bachem, Convexity and optimization in discrete structures, Convexity and Applications (P. M. Gruber and J. Wills, eds.), Birkhäuser, Basel, 1983.
  • 2. L. J. Billera and B. S. Munson, Polarity and inner products in oriented matroids, European J. Combin. 5 (1984), 293-308.
  • 3. J. Bokowski and B. Sturmfels, On the coordinatization of oriented matroids, Discrete and Computational Geometry 1 (1986), 293-306.
  • 4. J. Bokowski and B. Sturmfels, Polytopal and nonpolytopal spheres-an algorithmic approach, Israel J. Math, (to appear).
  • 5. B. Grünbaum, Convex polytopes, Interscience, London, 1967.
  • 6. B. Grünbaum, Arrangements and spreads, CBMS Regional Conf. Ser., no. 10, Amer. Math. Soc. Providence, R.I., 1972.
  • 7. W. V. D. Hodge and D. Pedoe, Methods of algebraic geometry, Cambridge Univ. Press, Cambridge, 1947.
  • 8. V. Klee and S. Wagon, Unsolved problems in mathematics (in preparation).
  • 9. Y. V. Matiyasevic, Diophantine representation of enumerable predicates, Izv. Akad. Nauk SSSR 35 (1971), 3-30.
  • 10. B. Mazur, Arithmetic on curves, Bull. Amer. Math. Soc. (N.S.) 14 (1986), 207-259.
  • 11. S. Mac Lane, Some interpretations of abstract linear dependence in terms of projective geometry, Amer. J. Math. 58 (1936), 236-240.
  • 12. N. E. Mnëv, On manifolds of combinatorial types of projective configurations and convex polyhedra, Soviet. Math. Dokl. 32 (1985), 335-337.
  • 13. B. Sturmfels, Boundary complexes of convex polytopes cannot be characterized locally, J. London Math. Soc. (to appear).
  • 14. A. Tarski, A decision method for elementary algebra and geometry, 2nd rev. ed., Univ. of California Press, Berkeley, 1951.
  • 15. N. L. White (ed.), Theory of matroids, Cambridge Univ. Press, Cambridge, 1986.
  • 16. J. Folkman and J. Lawrence, Oriented matroids, J. Combin. Theory Ser. B 25 (1978), 199-236.