Bulletin (New Series) of the American Mathematical Society

Induction theorems for infinite groups

John A. Moody

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 17, Number 1 (1987), 113-116.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183553966

Mathematical Reviews number (MathSciNet)
MR888884

Zentralblatt MATH identifier
0644.16014

Subjects
Primary: 19A31: $K_0$ of group rings and orders
Secondary: 16A27

Citation

Moody, John A. Induction theorems for infinite groups. Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 113--116. https://projecteuclid.org/euclid.bams/1183553966


Export citation

References

  • 1. H. Bass, Euler characteristics and characters of discrete groups, Invent. Math. 35 (1976), 155-196.
  • 2. H. Bass, Characters and traces, London Math. Soc. Lecture Notes 36 (1978), 1-26.
  • 3. K. A. Brown, J. Howie and M. Lorenz, Induced resolutions and Grothendieck groups of polycyclic by finite groups (preprint).
  • 4. F. T. Farrell and W. Hsiang, Whitehead groups of poly(finite or cyclic) groups, J. London Math. Soc. (2) 24 (1981), 308-324.
  • 5. P. Linnell, Decomposition of augmentation ideals and relation modules, J. London Math. Soc. (3) 47 (1983), 83-127.
  • 6. S. Montgomery, Left and right inverses in group algebras, Bull. Amer. Math. Soc. 75 (1975), 539-540.
  • 7. S. Rosset, The Goldie rank of virtually polycyclic group rings, Lecture Notes in Math., vol. 844, Springer-Verlag, Berlin and New York, 1981, pp. 35-45.
  • 8. F. Quinn, Algebraic K-theory of poly(finite or cyclic) groups, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 221-226.
  • 9. J. P. Serre, Représentations linéaires des groupes finis, Hermann, Paris, 1967.
  • 10. R. Swan, Induced representations and projective modules, Ann. of Math. (2) 77 (1960), 552-578.