Bulletin (New Series) of the American Mathematical Society

Quantum field theory in ninety minutes

Paul Federbush

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 17, Number 1 (1987), 93-103.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183553963

Mathematical Reviews number (MathSciNet)
MR888881

Zentralblatt MATH identifier
0617.58044

Subjects
Primary: 81E10
Secondary: 81C20

Citation

Federbush, Paul. Quantum field theory in ninety minutes. Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 93--103. https://projecteuclid.org/euclid.bams/1183553963


Export citation

References

  • 1. G. Battle and P. Federbush, A phase cell cluster expansion for Euclidean field theories, Ann. Physics 142 (1982), 95-139.
  • 2. D. Brydges, J. Fröhlich and A. Sokal, A new proof of the existence and nontriviality of the continuum $\varphi \sp{4}\sb{2}$ and $\varphi \sp{4}\sb{3}$ quantum field theories, Comm. Math. Phys. 91 (1983), 117.
  • 3. J. Glimm and A. Jaffe, Quantum physics, Springer-Verlag, Berlin and New York, 1981.
  • 4. B. Simon, The $P(\varphi)_2$ Euclidean (quantum) field theory, Princeton Univ. Press, Princeton, N. J., 1974.
  • 5. R. F. Streater and A. S. Wightman, PCT, spin and statistics, and all that, W. A. Benjamin, New York, 1964.
  • 6. Y. Meyer, La transformation en ondelettes, preprint.
  • 7. D. Brydges, What is a quantum field theory, Bull. Amer. Math. Soc. (N.S). 8 (1983), 31-40.
  • 8. D. Brydges and P. Federbush, A new form of the Mayer expansion in classical statistical mechanics, J. Math. Phys. 19 (1978), 2064-2067.
  • 9. D. Brydges, A short course on cluster expansions, Les Houches Summer School Notes (K. Osterwalder, ed.), 1984.