Bulletin (New Series) of the American Mathematical Society

Review: A. E. Hurd and P. A. Loeb, An introduction to nonstandard real analysis

Robert M. Anderson

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 16, Number 2 (1987), 298-306.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183553842

Citation

Anderson, Robert M. Review: A. E. Hurd and P. A. Loeb, An introduction to nonstandard real analysis. Bull. Amer. Math. Soc. (N.S.) 16 (1987), no. 2, 298--306. https://projecteuclid.org/euclid.bams/1183553842


Export citation

References

  • 1. S. Albeverio, J. E. Fenstad, R. Heogh-Krohn, and T. Lindstrom, Nonstandard methods in stochastic analysis and mathematical physics, Academic Press, New York (forthcoming).
  • 2. Robert M. Anderson, A nonstandard representation for Brownian motion and Itô integration, Israel J. Math. 25 (1976), 15-46.
  • 3. Robert M. Anderson, An elementary core equivalence theorem, Econometrica 46 (1978), 1483-1487.
  • 4. Robert M. Anderson, Core theory with strongly convex preferences, Econometrica 49 (1981), 1457-1468.
  • 5. Robert M. Anderson, Star-finite representations of measure spaces, Trans. Amer. Math. Soc. 271 (1982), 667-687.
  • 6. Robert M. Anderson, Strong core theorems with nonconvex preferences, Econometrica 53 (1985), 1283-1294.
  • 7. Robert M. Anderson, Notions of core convergence, Contributions to Mathematical Economics in Honor of Gerard Debreu (Werner Hildenbrand and Andreu Mas-Colell eds.), North-Holland Publishing Company, Amsterdam, 1986, pp. 25-46.
  • 8. Robert M. Anderson, The second welfare theorem with nonconvex preferences, Working Papers in Economic Theory and Econometrics #IP-327, Center for Research in Management, Univ. of Calif., Berkeley (January 1986).
  • 9. Leif Arkeryd, A nonstandard approach to the Boltzmann equation, Arch. Rational Mech. Anal. 77 (1981), 1-10.
  • 10. Leif Arkeryd, Intermodular forces of infinite range and the Boltzmann equation, Arch. Rational Mech. Anal. 77 (1981), 11-21.
  • 11. Leif Arkeryd, A time-wise approximated Boltzmann equation, IMA J. Appl. Math. 27 (1981), 373-383.
  • 12. Leif Arkeryd, Asymptotic behaviour of the Boltzmann equation with infinite range force, Comm. Math. Phys. 86 (1982), 475-484.
  • 13. Leif Arkeryd, Loeb solutions of the Boltzmann equation, Arch. Rational Mech. Anal. 86 (1984), 85-97.
  • 14. Robert J. Aumann, Markets with a continuum of traders, Econometrica 32 (1964), 39-50.
  • 15. Allen R. Bernstein and Abraham Robinson, Solution of an invariant subspace problem of K. T. Smith and P. R. Halmos, Pacific J. Math. 16 (1966), 421-431.
  • 16. Donald J. Brown and Abraham Robinson, The cores of large standard exchange economies, J. Econom. Theory 9 (1974), 245-254.
  • 17. Donald J. Brown and Abraham Robinson, Nonstandard exchange economies, Econometrica 43 (1975), 41-55.
  • 18. Nigel J. Cutland, Nonstandard measure theory and its applications, Bull. London Math. Soc. 15 (1983), 529-589.
  • 19. Martin Davis, Applied nonstandard analysis, Wiley, New York, 1977.
  • 20. A. Dvoretzky, P. Erdős and S. Kakutani, Double points of paths of Brownian motion in n-space, Acta Sci. Math. 12B (1950), 75-81.
  • 21. C. Ward Henson and Lang Moore, Jr., Nonstandard analysis and the theory of Banach spaces, Nonstandard Analysis—Recent Developments (Albert E. Hurd, ed.), Lecture Notes in Math., vol. 983, Springer-Verlag, Berlin and New York, 1983, pp. 27-112.
  • 22. Werner Hildenbrand, Core and equilibria of a large economy, Princeton Univ. Press, Princeton, N. J., 1974.
  • 23. Douglas N. Hoover and Edwin A. Perkins, Nonstandard construction of the stochastic integral and applications to stochastic differential equations. I, Trans. Amer. Math. Soc. 275 (1983), 1-36.
  • 24. Douglas N. Hoover and Edwin A. Perkins, Nonstandard construction of the stochastic integral and applications to stochastic differential equations. II, Trans. Amer. Math. Soc. 275 (1983), 37-58.
  • 25. J. Jacod and J. Memin, Existence of weak solutions for stochastic differential equations with driving semimartingales, Stochastics 4 (1981), 317-337.
  • 26. H. Jerome Keisler, Elementary calculus, Prindle, Weber and Schmidt, Boston, 1976.
  • 27. H. Jerome Keisler, Foundations of infinitesimal calculus, Prindle, Weber and Schmidt, Boston, 1976.
  • 28. H. Jerome Keisler, An infinitesimal approach to stochastic analysis, Mem. Amer. Math. Soc. no. 297 (1984).
  • 29. M. Ali Khan, Some equivalence theorems, Review of Economic Studies 41 (1974), 549-565.
  • 30. M. Ali Khan, Oligopoly in markets with a continuum of traders: An asymptotic approach, J. Econom. Theory 12 (1976), 273-297.
  • 31. M. Ali Khan and Salim Rashid, Limit theorems on cores with costs of coalition formation, preprint, Johns Hopkins Univ., 1976.
  • 32. Gregory F. Lawler, A self-avoiding random walk, Duke Math. J. 47 (1980), 655-693.
  • 33. Tom L. Lindstrom, Hyperfinite stochastic integration. I, The nonstandard theory, Math. Scand. 46 (1980), 265-292.
  • 34. Tom L. Lindstrom, Hyperfinite stochastic integration. II, Comparison with the standard theory, Math. Scand. 46 (1980), 293-314.
  • 35. Tom L. Lindstrom, Hyperfinite stochastic integration. III, Hyperfinite representations of standard martingales, Math. Scand. 46 (1980), 315-331.
  • 36. Peter A. Loeb, Conversion from nonstandard to standard measure spaces with applications in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113-122.
  • 37. Peter A. Loeb, Applications of nonstandard analysis to ideal boundaries in potential theory, Israel J. Math. 25 (1976), 154-187.
  • 38. Robert Lutz and Michel Goze, Nonstandard analysis: A practical guide with applications, Lecture Notes in Math., vol. 881, Springer-Verlag, Berlin and New York, 1981.
  • 39. Edward Nelson, Internal set theory: A new approach to nonstandard analysis, Bull. Amer. Math. Soc. 83 (1977), 1165-1198.
  • 40. Edwin Perkins, A global intrinsic characterization of Brownian local time, Ann. Probability 9 (1981), 800-817.
  • 41. Edwin Perkins, The exact Hausdorff measure of the level sets of Brownian motion, Z. Wahrsch. Verw. Gebiete 58 (1981), 373-388.
  • 42. Edwin Perkins, Weak invariance principles for local time, Z. Wahrsch. Verw. Gebiete 60 (1982), 437-451.
  • 43. Edwin Perkins, On the construction and distribution of a local martingale with a given absolute value, Trans. Amer. Math. Soc. 271 (1982), 261-281.
  • 44. Edwin Perkins, Stochastic processes and nonstandard analysis, Nonstandard Analysis—Recent Developments (Albert E. Hurd, ed.), Lecture Notes in Math., vol. 983, Springer-Verlag, Berlin and New York, 1983, pp. 162-185.
  • 45. Edwin Perkins, Work on measure-valued diffusions (in preparation).
  • 46. Salim Rashid, Economies with many agents: A nonstandard approach, Johns Hopkins, Baltimore (forthcoming).
  • 47. Abraham Robinson, Non-standard analysis, North-Holland Publishing Company, Amsterdam, 1970.
  • 48. H. L. Royden, Real analysis, MacMillan Publishing Co., New York, 1968.
  • 49. Andreas Stoll, A nonstandard construction of Levy Brownian motion with applications to invariance principles, Probability Theory and Related Fields 71 (1986), 321-334.
  • 50. Andreas Stoll, Self-repellent random walks and polymer measures in two dimensions, Dissertation, Ruhr-Universität Bochum, 1985.
  • 51. K. D. Stroyan and W. A. J. Luxemburg, Introduction to the theory of infinitesimals, Academic Press, New York, 1976.
  • 52. K. D. Stroyan and J. M. Bayod, Introduction to infinitesimal stochastic analysis, North-Holland, Amsterdam, 1986.