Bulletin (New Series) of the American Mathematical Society

Morse theory for fixed points of symplectic diffeomorphisms

Andreas Floer

Full-text: Open access

Article information

Bull. Amer. Math. Soc. (N.S.), Volume 16, Number 2 (1987), 279-281.

First available in Project Euclid: 4 July 2007

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 53C15: General geometric structures on manifolds (almost complex, almost product structures, etc.)
Secondary: 58F05


Floer, Andreas. Morse theory for fixed points of symplectic diffeomorphisms. Bull. Amer. Math. Soc. (N.S.) 16 (1987), no. 2, 279--281. https://projecteuclid.org/euclid.bams/1183553837

Export citation


  • 1. V. I. Arnold, Mathematical methods of classical mechanics, (Appendix 9), Springer-Verlag, Berlin and New York, 1978.
  • 2. C. C. Conley and E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture by V. I. Arnold, Invent. Math. 73 (1982), 33-49.
  • 3. A. Floer, Proof of the Arnold conjecture for surfaces and generalizations for certain Kähler manifolds, Duke Math. J. 53 (1986), 1-32.
  • 4. B. Fortune, A symplectic fixed point theorem for CPn, Invent. Math. 81 (1985), 29-46.
  • 5. M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347.
  • 6. J. Milnor, Lectures on the H-cobordism theorem, Mathematical Notes, Princeton Univ. Press, 1965.
  • 7. J. C. Sikorav, Points fixes d'un symplectomorphisme homologue de l'identité, J. Differential Geom. 22 (1985), 49-79.
  • 8. A. Weinstein, C0 -perturbation theorems for symplectic fixed points and Lagrangian intersections, Lecture Notes, Amer. Math. Soc. Summer Institute on nonlinear functional analysis and applications, Berkeley, 1983.