Bulletin (New Series) of the American Mathematical Society

Algebraic $K$-theory of hyperbolic manifolds

F. T. Farrell and L. E. Jones

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 14, Number 1 (1986), 115-119.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183552788

Mathematical Reviews number (MathSciNet)
MR818065

Zentralblatt MATH identifier
0619.57016

Subjects
Primary: 16A27 18F25: Algebraic $K$-theory and L-theory [See also 11Exx, 11R70, 11S70, 12- XX, 13D15, 14Cxx, 16E20, 19-XX, 46L80, 57R65, 57R67] 22E40: Discrete subgroups of Lie groups [See also 20Hxx, 32Nxx]

Citation

Farrell, F. T.; Jones, L. E. Algebraic $K$-theory of hyperbolic manifolds. Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 1, 115--119. https://projecteuclid.org/euclid.bams/1183552788


Export citation

References

  • 1. R. L. Adler and B. Weiss, Entropy, a complete metric invariant for automorphisms of the torus, Proc. Nat. Acad. Sci. U.S.A. 57 (1967), 1573-1576.
  • 2. D. V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Steklov Inst. Math. 90 (1969).
  • 3. H. Bass, A. Heller and R. G. Swan, The Whitehead group of a polynomial extension, Inst. Hautes Études Sci. Publ. Math. 22 (1964), 61-79.
  • 4. A. Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4) 7 (1974), 235-272.
  • 5. R. Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973), 429-460.
  • 6. T. A. Chapman, Homotopy conditions which detect simple homotopy equivalences, Pacific J. Math. 80 (1979), 13-46.
  • 7. E. H. Connell and J. Hollingsworth, Geometric groups and Whitehead torsion, Trans. Amer. Math. Soc. 140 (1969), 161-181.
  • 8. F. T. Farrell and W. C. Hsiang, On the rational homotopy groups of the diffeomorphism groups of discs, spheres and aspherical manifolds, Proc. Sympos. Pure Math., vol. 32, Amer. Math. Soc., Providence, R.I., 1978, pp. 325-337.
  • 9. F. T. Farrell and W. C. Hsiang, The Whitehead group of poly- (finite or cyclic) groups, J. London Math. Soc. (2) 24 (1981), 308-324.
  • 10. F. T. Farrell and L. E. Jones, Markov cell structures, Bull. Amer. Math. Soc. 83 (1977), 739-740.
  • 11. F. T. Farrell and L. E. Jones, Markov cell structures for expanding maps in dimension two, Trans. Amer. Math. Soc. 255 (1979), 315-327.
  • 12. F. T. Farrell and L. E. Jones, K-theory and dynamics. I (submitted).
  • 13. F. T. Farrell and L. E. Jones, K-theory and dynamics. II (in preparation).
  • 14. S. Ferry, The homeomorphism group of a compact Hilbert cube manifold is an ANR, Ann. of Math. (2) 106 (1977), 101-119.
  • 15. M. Gromov, Manifolds of negative curvature, J. Differential Geom. 13 (1978), 223-230.
  • 16. A. E. Hatcher, Concordance spaces, higher simple homotopy theory, and applications, Proc. Sympos. Pure Math., vol. 32, Amer. Math. Soc., Providence, R.I., 1978, pp. 3-21.
  • 17. A. J. Nicas, On the higher Whitehead groups of a Bieberbach group, Trans. Amer. Math. Soc. 287 (1985), 853-859.
  • 18. F. Quinn, Ends of maps. I, Ann. of Math. (2) 110 (1979), 275-331.
  • 19. F. Quinn, Algebraic K-theory of poly- (finite or cyclic) groups, Bull. Amer. Math. Soc. 12 (N.S.) (1985), 221-226.
  • 20. M. Ratner, Markov partitions for Anosov flows on n-dimensional manifolds, Israel J. Math. 15 (1973), 92-114.
  • 21. Ya. Sinai, Markov partitions and C-diffeomorophisms, Functional Anal. Appl. 2 (1968), 61-82.
  • 22. F. Waldhausen, Algebraic K-theory of topological spaces. I, Proc. Sympos. Pure Math., vol. 32, Amer. Math. Soc., Providence, R.I., 1978, pp. 35-60.